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Abstract

In this paper, we present the Federated Up-
per Confidence Bound Value Iteration algo-
rithm (Fed-UCBVI), a novel extension of the
UCBVI algorithm (Azar et al., 2017) tailored
for the federated learning framework. We
prove that the regret of Fed-UCBVI scales
as Õ(

√
H3|S||A|T/M), with a small addi-

tional term due to heterogeneity, where |S|
is the number of states, |A| is the number
of actions, H is the episode length, M is the
number of agents, and T is the number of
episodes. Notably, in the single-agent set-
ting, this upper bound matches the minimax
lower bound up to polylogarithmic factors,
while in the multi-agent scenario, Fed-UCBVI
has linear speed-up. To conduct our analysis,
we introduce a new measure of heterogene-
ity, which may hold independent theoretical
interest. Furthermore, we show that, unlike
existing federated reinforcement learning ap-
proaches, Fed-UCBVI’s communication com-
plexity only marginally increases with the
number of agents.

1 INTRODUCTION

Federated reinforcement learning (FRL, Zhuo et al.,
2019; Qi et al., 2021) adapts the principles of feder-
ated learning (FL, McMahan et al., 2017) to the do-
main of reinforcement learning (RL, Sutton and Barto,
2018). It enables multiple agents, evolving in indepen-
dent environments, to learn a policy collaboratively
without directly exchanging their states/actions. To
learn together, agents communicate under the super-

vision of a central server (CS), aiming to maximize the
expected rewards averaged across all agents. Conse-
quently, agents participating in FRL may learn better
policies with fewer interactions with the environment.
FRL appears to be a promising solution for reducing
the cost of training. However, the efficient implemen-
tation of FRL faces significant challenges. Similarly to
FL, agents typically evolve in different environments
and often have limited computational power and com-
munication bandwidth. Furthermore, the traditional
challenges of RL, such as balancing exploration and ex-
ploitation, remain. Thus, there is a growing demand
for methods tailored for FRL, aiming to reduce com-
munication complexity (i.e., the number of commu-
nications) while maintaining efficient exploration and
learning.

FRL has attracted considerable attention in recent
years, with a strong focus put on federated versions
of Q-Learning. This research often relies on one of
two following assumptions: either (1) all agents op-
erate in identical environments (Chen et al., 2023;
Zheng et al., 2024a,b), or (2) a generative model is
available, allowing access to sampling from any state-
action pair without exploration (Jin et al., 2022; Wang
et al., 2024). Another notable category of methods,
called distributed reinforcement learning (Bai et al.,
2019; Zhang et al., 2020), enables agents to address
RL problems collaboratively. However, these meth-
ods require centralizing observational data on a single
server, which may not be feasible in real applications.

Unfortunately, the aforementioned approaches do not
address the exploration-exploitation trade-off in het-
erogeneous environments. Furthermore, their high
communication complexity poses a major challenge for



Table 1: Comparison with related algorithms in the online setting

Type Algorithm Heterogeneity Communication complexity Regret

Model-based

Concurrent UCBVI (Azar et al. 2017) ✗ O(T ) Õ(
√
H3|S||A|T/M)

Byzan-UCBVI (Chen et al. 2023) ✗ O(M · |S||A|H · log(T )) Õ(
√
H4|S|2|A|T/M)

Fed-UCBVI (our work) ✓ O (|S||A|H · log(T )) Õ(
√
H3|S||A|T/M)

Model-free

Concurrent UCB-Advantage (Zhang et al. 2020) ✗ O(T ) Õ(
√
H3|S||A|T/M)

FedQ-Bernstein (Zheng et al. 2024a) ✗ O(M · |S||A|H3 · log(T )) Õ(
√
H4|S||A|T/M)

FedQ-Advantage (Zheng et al. 2024b) ✗ O(M · |S||A|H2 log(H) · log(T )) Õ(
√
H3|S||A|T/M)

Lower Bound (Jin et al. 2018; Domingues et al. 2021b) ✗ ? Õ(
√
H3|S||A|T/M)

* The results are derived in a homogeneous setting. For all bounds, only the leading term with respect to the dependence on T is shown. H: number
of steps per episode; T : total episodes collected per agent; |S|: number of states; |A|; number of actions; M : number of agents.

their use, even with homogeneous agents.

In this paper, we introduce the algorithm Fed-UCBVI

for tabular episodic FRL and we analyze its feder-
ated regret, i.e., the regret averaged across all agents,
in the presence of environmental heterogeneity. The
tabular FRL problem involves M agents, each inter-
acting with its own environment, modeled as a finite-
horizon Markov Decision Process (MDP). For an agent
i ∈ [M ], a finite-horizon MDP is defined by a tuple
Mi := (S,A, H, {Pih}h∈[H], {rih}h∈[H]), where S is the
finite state space, A is the finite action space, H is
the number of steps in one episode (also referred to
as a planning horizon), Pih(s

′|s, a) denotes the prob-
ability of transitioning from a state s ∈ S to the
next state s′ ∈ S after taking action a ∈ A at step
h for agent i, and rih(s, a), is a bounded determinis-
tic reward function that satisfies rih(s, a) ∈ [0, 1] for
all (s, a, h, i) ∈ S × A × [H] × [M ]. Note that both
the transition probabilities (kernel) and the reward
function can vary depending on the decision-making
step h ∈ [H]. The learning process is divided into T
episodes, each of length H. Both the transition kernel
and the reward function are assumed to be unknown
to all agents and the central server (CS).

Fed-UCBVI is a model-based approach where each
agent independently estimates its local state-action
transition kernel. These local estimates are then used
to compute state-action value functions, which are ag-
gregated by a CS using an adaptive scheme that ac-
counts for each agent’s level of uncertainty. Commu-
nication complexity is managed through an adaptive
communication strategy triggered by the optimization
process’s progress and ensures efficient coordination.
Overall, our contributions are:

• We propose Fed-UCBVI, an FRL algorithm designed
to aggregate the local estimators of each agent.
We prove that the federated regret of Fed-UCBVI

scales as O(
√
H3|S||A|T/M), up to a heterogeneity

term which scales proportionally to our heterogene-
ity measure. This shows that Fed-UCBVI achieves

a linear speedup and effectively accelerates train-
ing compared to single-agent RL. To our knowledge,
Fed-UCBVI is the first provably efficient algorithm for
regret minimization in heterogeneous environments.

• To analyze Fed-UCBVI, we introduce a new mea-
sure of heterogeneity that quantifies the divergence
of each agent’s state-transition kernel from a baseline
kernel, which may be of independent interest.

• We develop a novel method for reducing the com-
munication cost. We prove that the communica-
tion complexity of Fed-UCBVI is O(M log log T +
log T ). This is a significant improvement over exist-
ing methods (e.g., Zheng et al., 2024a), that require
O(M log T ) communication rounds.

• We validate our theoretical results through numer-
ical experiments on FRL problems, demonstrating
that our algorithm outperforms existing FRL base-
lines with theoretical guarantees. In particular, our
simulations show a significant improvement in regret
compared to Fed-Q-learning (Zheng et al., 2024a) for
different degrees of heterogeneity.

The paper is organized as follows: we review the re-
lated work in Section 2, and introduce the necessary
mathematical background in Section 3. In Section 4,
we introduce and analyze the Fed-UCBVI algorithm.
Then, we present numerical experiments in Section 5.

2 RELATED WORK

Reinforcement Learning. Two main approaches
have been proposed for regret minimization in the
single-agent, finite-horizon tabular setting: (i) model-
based algorithms (Azar et al., 2017; Dann et al., 2017;
Zanette and Brunskill, 2019; Zhang et al., 2024b),
and (ii) model-free algorithms (Jin et al., 2018; Zhang
et al., 2020; Li et al., 2021).

Both approaches offer algorithms that achieve the min-
imax optimal lower bound up to poly-logarithmic fac-
tors, specifically Ω(

√
H3|S||A|T ) (Jin et al., 2018;

Domingues et al., 2021b). Among these, UCBVI (Azar
et al., 2017), which is based on the principle of opti-



mism in the face of uncertainty, was the first algorithm
to achieve the minimax bound.

Federated Reinforcement Learning. The FRL
method most closely related to ours is the Byzantine
robust distributed UCBVI algorithm (Chen et al., 2023),
which assumes homogeneous agents. This algorithm
achieves a regression bound of Õ(

√
H4|S|2|A|T/M)

and a communication complexity that scales logarith-
mically with the number of episodes T .

In contrast, our method achieves a regret of
Õ(
√
H3|S||A|T/M), which is optimal in single-agent

environments. Moreover, we also provide guarantees
in heterogeneous environments.

Other FRL approaches are based on model-free
methods. Zhang et al. (2020) proposed a feder-
ated variant of Q-learning, achieving a regret of
Õ(
√
H3|S||A|T/M), with a communication complex-

ity linear in T . Zheng et al. (2024a) later reduced the
communication cost to O(M log T ), but introduced an
additional factor of H in the regret bound. More re-
cently, Zheng et al. (2024b) improved both regret and
communication cost. However, their method still re-
quires homogeneous agents, and the communication
complexity remains O(M log T ).

3 SETTING

3.1 Federated Reinforcement Learning

Policy and Value Functions. A deterministic pol-
icy π is a set of functions πh : S → A where πh(s) ∈ A,
h ∈ [H]. The value function V i,π

h , is defined as:

V i,π
h (s) = Eπ

[∑H
h′=h r

i
h′(sih′ , aih′)

∣∣∣sih = s
]
, (1)

where for all h ≤ h′ ≤ H, aih′ ∼ πih′(.|sih′) and for all
h ≤ h′ ≤ H − 1, sih′+1 ∼ Pih′(.|sih′ , aih′). Similarly, the
Q-function of a policy π for agent i at step h is

Qi,π
h (s, a) := Eπ

[∑H
h′=h r

i
h′(sih′ , aih′)

∣∣∣sih = s, aih = a
]
,

and satisfies the Bellman equations

Qi,π
h (s, a) = rih(s, a) + PihV

i,π
h+1(s, a) ,

V i,π
h+1(s) = Qi,π

h (s, πh(s)) .
(2)

Additionally, the optimal Q-value satisfies the optimal
Bellman equations

Qi,⋆
h (s, a) = rih(s, a) + PihV

i,⋆
h+1(s, a) ,

V i,⋆
h (s) = max

a∈A
Qi,⋆
h (s, a) .

(3)

Learning Protocol. At the beginning of each
episode t ∈ [T ], all agents select a common policy

πt, which is computed based on the information ex-
changed prior to episode t. Subsequently, each agent
generates an independent trajectory of length H. At
each step h, an agent observes its state sit,h ∈ S and

takes an action ait,h = πt,h(s
i
t,h) ∈ A. The agent then

observes the next state sit,h+1 according to the transi-

tion probabilities Pih(·|sit,h, ait,h) and receives a deter-

ministic reward rit,h = rih(s
i
t,h, a

i
t,h). After generating

these trajectories, agents may exchange information
through the central server.

Federated Regret. The performance of the learn-
ing algorithm is evaluated using the federated regret,
defined as

R(T ) := max
π

1

M

M∑
i=1

T∑
t=1

V i,π
1 (sit,1)− V i,πt

1 (sit,1) . (4)

This regret measures the cumulative difference, in ex-
pectation, between the average value of the optimal
collaborative policy and the policies used throughout
the training procedure.

Communication Complexity and Cost. The
communication complexity, denoted by C(T ), is de-
fined as the number of episodes where communication
between the CS and the agents occurs. The communi-
cation cost refer to the total number of bits exchanged
between the central server and the agents during the
learning process. The objective of the FRL algorithm
is to simultaneously minimize both the regret R(T )
and the communication complexity C(T ).

3.2 Environmental Heterogeneity

The environments in which agents evolve may dif-
fer from one to another. However, since agents aim
to learn a shared policy, environmental heterogene-
ity must be small. To measure this, we introduce a
new notion of heterogeneity, decomposing each agent’s
state-action transition kernel into a common part,
shared by all agents, and an individual part that re-
flects unique environmental characteristics. Formally,
this is captured by the following assumption.

A-1. There exists a non-homogeneous transition ker-
nel {Pc

h}h∈[H], M individual non-homogeneous tran-

sition kernels {P ind,i
h }h∈[H] for any i ∈ [M ], and a

constant εp ∈ [0, 1), such that for any i ∈ [M ] and
(s, a, s′, h) ∈ S ×A× S × [H],

Pih(s
′|s, a) = (1− εp)P

c
h(s

′|s, a) + εpP
ind,i
h (s′|s, a) .

Likewise, we assume that agents receive comparable
rewards for a given state-action pair.



A-2. There exists a constant εr ∈ [0, 1) such that for
all (i, j) ∈ [M ], and for all h ∈ [H] it holds that

∥r ih − rjh∥∞ ≤ εr .

Note that A- 1 implies the following bound on the
difference between the common transition kernel and
each agent’s transition kernel, measured in L1-norm,

max
(s,a,h)∈S×A×[H]

∥Pc
h(·|s, a)− Pih(·|s, a)∥1 ≤ εp . (5)

We prove this inequality in Appendix F. Consequently,
(1) is slightly stronger than Equation (5), which is the
typical assumption in other FRL settings, such as Fed-
SARSA (Zhang et al., 2024a) or policy optimization
with access to a simulator (Jin et al., 2022; Wang et al.,
2024). The motivation for using A-1 over (5) lies in the
need to control how samples from Pih relate to samples
from Pc

h. This connection is crucial in RL without a
generative model, as the data generation process is not
independent and identically distributed, forcing agents
to exploit all the samples they have. In Section 4, we
discuss in detail the necessity of this assumption for
our analysis.

4 FED-UCBVI ALGORITHM

In this section, we present the Fed-UCBVI algorithm,
which extends the UCBVI algorithm proposed by Azar
et al. (2017) to the federated learning framework. The
process involves multiple communication rounds with
a CS. The number of episodes in each communication
round (or epoch) r is random, and each epoch is de-
composed into three phases:

(i) Data collection: During this phase, each agent in-
teracts with its environment using the policy π(r)
provided by the CS, gathering trajectory data.

(ii) Synchronization: Once any agent meets the syn-
chronization conditions, it sends a synchroniza-
tion signal to the central server, which then broad-
casts this information to all other agents.

(iii) Policy update: In this phase, all agents engage
in H sequential communications with the CS. At
each step h = H to 1, agents send their local esti-
mates of the Q-values and other related informa-
tion related to step h to the CS. In return, they
receive a global estimate of the V -values, along
with an updated policy and related information
for that step.

The following sections provide a detailed overview of
each of these stages.

Data Collection. At the beginning of round r, each
agent i ∈ [M ] follows the policy π(r) to collect new
trajectories. For ℓ ∈ N, denote by ni(r,ℓ),h(s, a) and

ni(r,ℓ),h(s, a, s
′) the number of visits to a state-action

pair (s, a) and the number of transitions from (s, a) to
s′ at step h after ℓ episodes in the round r.

Synchronization. At the start of epoch r, all agents
receive the current global counters

N(r),h(s, a) :=
∑M
i=1 n

i
(r),h(s, a), (6)

where ni(r),h(s, a) := ni(r,0),h(s, a) is the number of vis-
its of a state-action pair by agent i prior to round r.

During epoch r, after ℓ episodes, agent i sends a syn-
chronization signal if a newly visited state-action-step
triplet (s, a, h) is identified and one of two synchroniza-
tion conditions is met. These conditions depend on
whether the total number of visits N(r),h(s, a) exceeds

a threshold ν(δ, T ) = Õ(εpTHM + M) (see Equa-
tion (57) in Appendix E for the full expression).

1) Local Doubling Condition. If N(r),h(s, a) ≤ ν(δ, T ),
an agent i sends the synchronization signal if

ni(r,ℓ),h(s, a) > 2ni(r),h(s, a) . (7)

2) Globally Estimated Doubling Condition. If
N(r),h(s, a) > ν(δ, T ), agent i sends the synchroniza-
tion signal if

N̂ i
(r,ℓ),h(s, a) > 2N(r),h(s, a) , (8)

where N̂ i
(r,ℓ),h(s, a) is an estimate of

∑N
i=1 n

i
(r,ℓ),h(s, a)

based on the information available to agent i.

Policy Update. Upon receiving the synchroniza-
tion signal, each agent computes its local estimates
of transition probabilities as

P̂i(r+1),h(s
′|s, a) := ni

(r+1),h(s,a,s
′)

ni
(r+1),h

(s,a)
(9)

if ni(r+1),h(s, a)>0, otherwise P̂i(r+1),h(s
′|s, a) := 1/|S|.

Next, the agents and the central server exchange their
Q- and V -value estimates. For h = H, . . . , 1, each
agent computes the local Q-value estimate

Q̂i
(r+1),h(s, a) :=

[̂
r ih + P̂i(r+1),hV̂(r+1),h+1

]
(s, a), (10)

using the global value estimate V̂(r+1),h+1 previously
received from the CS; note that for h = H, this value
is set to zero and does not require communication.

Then, the CS collects the local Q-value estimates
from all agents, along with additional information
necessary to compute a Bernstein-like bonus function
b(r+1),h(s, a) (see (39) in Appendix for an exact ex-
pression). The aggregated Q-value is computed as

Q̂(r+1),h(s, a):=min
(
[T ω

(r+1),h+b(r+1),h](s, a),H
)
, (11)



Algorithm 1: Fed-UCBVI

Initialization: t = 1; r = 1; r̂ ih(s, a) = 0; N(1),h(s, a) = 0; ni(1,0),h(s, a) = 0; Q̂(1),h(s, a) = V̂(1),h(s) = H

for all (s, a, h, i) ∈ S ×A× [H]× [M ]; π(1) = {π(1),h}h for some policy π(1); and ν(δ, T ) set as in (57).
while t ≤ T do

for each agent i = 1 to M in parallel do

Set l = 1; ni(r),h(s, a) = ni(r,0),h(s, a); and N̂
i
(r,0),h(s, a) = N(r),h(s, a)

while no synchronization signal do
Collect (sit,h, a

i
t,h, r

i
t,h, s

i
t,h+1)1≤h≤H using π(r)

for h = H to 1 do
Set ni(r,ℓ),h(s, a) = ni(r,ℓ−1),h(s, a) + 1(s,a)(s

i
t,h, a

i
t,h) for (s, a) ∈ S ×A and

ni(r,ℓ),h(s, a, s
′) = ni(r,ℓ−1),h(s, a, s

′) + 1(s,a,s′)(s
i
t,h, a

i
t,h, s

i
t,h+1) for (s, a, s

′) ∈ S ×A× S
Set N̂ i

(r,ℓ),h(s, a) = N̂ i
(r,ℓ−1),h(s, a) +M1(s,a)(s

i
t,h, a

i
t,h)} for (s, a) ∈ S ×A

Set r̂ ih(s
i
t,h, a

i
t,h) = rit,h and ℓ = ℓ+ 1

if
(
N(r),h(s

i
t,h, a

i
t,h) ≤ ν(δ, T ) and ni(r,ℓ),h(s

i
t,h, a

i
t,h) > 2ni(r),h(s

i
t,h, a

i
t,h)
)

or
(
N(r),h(s

i
t,h, a

i
t,h) > ν(δ, T ) and N̂ i

(r,ℓ),h(s
i
t,h, a

i
t,h) > N(r),h(s

i
t,h, a

i
t,h)
)
then

Send synchronization signal

Set t = t+ ℓ; ni(r+1),h(s, a) = ni(r,ℓ),h(s, a) and update the transition kernels using (9)

Set V̂(r+1),H+1(s) = 0 for all s ∈ S and broadcast it to all the clients
for h = H to 1 do

for agent i = 1 to M in parallel do

Compute Q̂i
(r+1),h using (10)

Send ni(r+1),h,P̂
i
(r+1),hV̂(r+1),h+1, P̂

i
(r+1),hV̂

2
(r+1),h+1, and Q̂i

(r+1),h to the central server

Compute N(r+1),h, Q̂(r+1),h, V̂(r+1),h(s), and π(r+1),h using (6), (11), (13), and (14) and
broadcast them to all the clients

Set r = r + 1

with T ω
(r+1),h(s, a) =

∑M
i=1ω

i
(r+1),h(s, a)Q̂

i
(r+1),h(s, a),

and

ωi(r+1),h(s, a) :=
ni
(r+1),h(s,a)

N(r+1),h(s,a)
. (12)

Finally, the central server updates the value function
and policy according to the equations

V̂(r+1),h(s) := max
a∈A

Q̂(r+1),h(s, a) , (13)

π(r+1),h(s) := argmax
a∈A

Q̂(r+1),h(s, a) . (14)

These updated values are distributed to all agents, and
the process continues for all h = H, . . . , 1. Once h = 1
is reached, the new epoch r + 1 begins.

Communication Complexity. Our algorithmic
design shares similarities with previous work on rein-
forcement learning with low switching cost (Bai et al.,
2019; Zhang et al., 2020; Qiao et al., 2022). In par-
ticular, the number of times the local data collection
policy changes—known as the switching cost—directly
corresponds to the number of communication rounds

in our framework, which we define as the communi-
cation complexity. In its simplest form, the doubling
condition in this context can be expressed as:

∃(s, a, h) : N(r,ℓ),h(s, a) > 2N(r),h(s, a), , (15)

where N(r,ℓ),h(s, a) :=
∑M
i=1 n

i
(r,ℓ),h(s, a) represents

the cumulative count across agents.

However, this condition cannot be directly verified in a
federated learning setting, as the value of N(r,ℓ),h(s, a)
is not accessible to any individual agent. One poten-
tial solution is to use a weaker local doubling condi-
tion, as defined in (7). However, this approach results
in communication complexity scaling linearly with the
number of agents M , which is impractical for large-
scale federated learning environments. Instead, we
propose to construct an estimate of the global counter
N̂ i

(r,ℓ),h(s, a) to serve as a plug-in estimate on the left-

hand side of (15). This is the core idea behind the
condition in (8). While such estimates may be inaccu-
rate during the initial stages of training, they become
reliable once the number of visits exceeds a threshold



ν(δ, T ) = Õ(εpTHM +M), defined in (57). At that

point, N̂ i
(r,ℓ),h(s, a) can be effectively used as a plug-in

estimate. Using this approach, we establish a bound
on the communication complexity of Fed-UCBVI.

Lemma 4.1 (Communication Complexity). With
probability at least 1 − δ, the number of communica-
tion rounds of Fed-UCBVI is bounded by

C(T ) ≤ O
(
|S||A|H log T +M |S||A|H log log T

+M |S||A|H log(1 + εpT )
)
,

where logarithmic dependence in |S|, |A|, H, 1/δ and
M is ignored.

Sketch of the proof: To prove the result, we con-
sider a fixed triplet (s, a, h) and count how many syn-
chronizations this triplet can trigger. Let kmin

s,a,h repre-
sent the index of the last round where N(r),h(s, a) ≤
ν(δ, T ). To bound the number of synchronizations that
occur between the first round and round kmin

s,a,h, note
that agents send an abort signal only when their local
visit count of (s, a) at time h has doubled. This can
happen at most log2(ν(δ, T )) times for an individual
agent, and for all agents combined, the total is upper
bounded by M log2(ν(δ, T )).

Next, we bound the number of synchronizations be-
tween round kmin

s,a,h and the final round. By applying a
Bernstein-type concentration inequality, we can show
that the synchronization rule (8) implies the equiv-
alent of (15), although with a coefficient of 8/7 in-
stead of 2 on the right-hand side. Using a similar ar-
gument as above, we obtain O(log(M)) synchroniza-
tions triggered by a single state-action-step triplet. We
complete the proof by summing these bounds over all
(s, a, h) and using the expression of ν(δ, T ). □

A complete proof of Lemma 4.1 is provided in Ap-
pendix E. Importantly, we observe that, in the homo-
geneous setting, the linear dependence onM vanishes.
Moreover, we can estimate the communication cost,
i.e., the number of bits exchanged, by noting that in
each communication round, each agent transmits ob-
jects of size at most |S||A|H.

Computational and Space Complexity. First,
we remark that, at all times, agents store objects of
size O(|S|2|A|H). At every episode, agents perform
O(1) operations, while they perform O(|S|2|A|H) op-
erations at communication times. By Lemma 4.1, we
deduce that the computation complexity of this algo-
rithm isO(T+|S|3|A|2H2 log T+M |S||A|H log log T+
M |S||A|H log(1 + εpT )) for all T episodes.

Regret Bound. We now state our main result, which
bounds the federated regret of Fed-UCBVI.

Theorem 4.1. With probability at least 1− δ, the fol-
lowing bound on the regret of Fed-UCBVI holds

R(T ) = Õ
(√

H3|S||A|T/M +H3|S|2|A|
)

+ Õ (TH(Hεp + εr)) .

We give a sketch of the proof below, and postpone the
detailed proof to Appendix D.

In the homogeneous setting, where εp = εr = 0, we re-
cover the expected linear speedup in number of agents
and achieve a minimax optimal regret bound up to
logarithmic factors (see Table 1 for comparisons). In
contrast, in the heterogeneous setting, an additional
term, that scales linearly with the degree of hetero-
geneity, emerges. We show in Lemma F.9 in Appendix
that this is expected, and comes from the fact that,
in some cases, a policy optimal for one agent is sub-
optimal by at least εpH

2 for another agent. This il-
lustrates the trade-off involved in cooperation between
heterogeneous agents: if the degree of heterogeneity is
too large, cooperation can become counterproductive.

Sketch of the proof: As a first step of the proof, we
reduce the problem of minimizing the federated regret
(4) to the problem of minimizing a common regret.
We introduce the common MDP Mc as follows

Mc := (S,A, H, {rch := 1
M

∑M
i=1 r

i
h}h, {Pc

h}h) , (16)

where {Pc
h}h is defined in A-1. We set V c,π

h and V c,⋆
h

the value-function of a policy π and optimal value-
function in Mc. The common regret is defined as

Rc(T ) :=
1

M

T∑
t=1

M∑
i=1

V c,⋆
1 (sit,1)− V c,πt

1 (sit,1) . (17)

Adapting the performance-difference lemma of Russo
(2019) under A-1, it may be shown that

R(T ) = max
π

1

M

T∑
t=1

M∑
i=1

Vi,π1 (sit,1)− Vi,πt

1 (sit,1)

≤ Rc(T ) + 2TεPH
2 + 2TεrH .

As shown in Lemma F.9, the scalingO(T (εpH
2+εrH))

with H2 is unavoidable.

The remainder of the proof involves three key steps,
outlined below. The first step focuses on estimating
the common transition kernel and introduces the pri-
mary technical innovations of this work. It also pro-
vides justification of A-2.

Step 1: Estimation of the common transition
kernel. First, we prove that the weighted average
kernel,

P̂(r),h(s
′|s, a) :=

∑M
i=1 ω

i
(r),h(s, a) · P̂

i
(r),h(s

′|s, a) ,



where weights are defined in (12), forms a well-defined
(biased) estimator of the common transition kernel Pc

h

using data from all agents. Importantly, neither the
agents nor the CS have direct access to this quantity.

The analysis of P̂(r),h, underA-2 poses significant chal-
lenges compared to both the generative model setting
and the case involving homogeneous agents. To illus-
trate, the kernel can be reformulated as follows, incor-
porating all samples from the agents:

P̂(r),h(s
′|s, a) = 1

N(r),h(s,a)

∑M
i=1 n

i
(r),h(s, a, s

′) .

In the homogeneous scenario, where εp = 0, as ex-
plored in prior work (Zheng et al., 2024a,b), the esti-
mate is derived from an i.i.d. sequence of categorical
random variable samples from Pc

h(·|s, a), simplifying
the analysis. Moreover, within the generative model
framework, such as in (Jin et al., 2022; Wang et al.,
2024), we can ensure an equal sample count from each

agent’s transition kernel Pih, resulting in P̂(r),h as a
simple mean of independent biased estimates of the
common kernel.

However, in our setting, the estimator P̂(r),h incorpo-
rates a random and non-stationary number of samples
from each agent, making standard techniques of condi-
tioning on a total sample size N(r),h(s, a) inapplicable.
Using union-bound arguments to account for the vari-
ability in sample sizes across agents {ni(r),h(s, a)}i∈[M ]

results in an exponential number of configurations
with respect to M , constraining any possibility of lin-
ear speed-up.

Using A- 2, every kernel Pih is a mixture of Pc
h and

P ind,i
h . The samples obtained by agent i as a mixture

of samples coming from the two latter kernels: sam-
ple sit,h is with probability 1 − εp generated from Pc

h,

and with probability εp from P ind,i
h . We define a vir-

tual estimate of the common kernel, P̂c
(r),h, for each

communication round r, representing the estimate we
would have obtained if all samples were drawn solely
from Pc

h. This estimate is subject to a bias resulting
from the heterogeneity.∥∥∥(P̂(r),h − P̂c

(r),h)(·|s, a)
∥∥∥
1
= Õ

(
εP + 1

N

)
, (18)

where N = N(r),h(s, a), that holds for any (r, s, a, h) ∈
[C(T )]× S ×A× S.

Step 2: Optimism. In our setting, our estimates
are not optimistic due to the presence of heterogene-
ity; however, we can show the analog of the required
properties V̂(r),h(s) ≥ V c,⋆

h (s) − (2εr + 3εpH)(H +
1 − h)), for any r and (s, h) ∈ S × [H]. The key in-
gredients are concentration inequalities, an inequality
(18) and Lemma 14 of (Zhang et al., 2021); see also

Lemma D.1 in Appendix. The proof is carried out by
induction on h. Applying the update rule (20), com-
bined with a simple rearranging of the terms, yields

Q̂(r),h(s, a) ≥ Qc,⋆
h (s, a) + (P̂c

(r),h − Pc
h)V

c,⋆
h+1(s, a)︸ ︷︷ ︸

(IV): concentration error

+

M∑
i=1

ωi(r),h(s, a)̂r
i
h(s, a)−

1

M

M∑
i=1

rih(s, a)︸ ︷︷ ︸
(I): reward heterogeneity error

+ P̂(r),h(V̂(r),h+1(s, a)− V c,⋆
h+1(s, a))︸ ︷︷ ︸

(II): correction error

+ (P̂(r),h − P̂c
(r),h)V

c,⋆
h+1(s, a)︸ ︷︷ ︸

(III): transition heterogeneity error

+ b(r),h(s, a) .

Terms (II) and (IV), which represent the correc-
tion and the concentration errors, are standard and
are controlled using respectively induction hypothe-
sis, Lemma D.1 and standard deviation inequalities.
We control (I) by applying A-2 and noticing that the
convex combination of r̂ ih(s, a) is also a convex combi-
nation of the true rewards rih(s, a). Finally, to control
(III) we combine Holder’s inequality and inequality
(18). An appropriate choice of the exploration bonus
concludes the statement.

Step 3: Bounding the regret. For each quantity
indexed by the number of communication rounds r
(e.g. V̂(r),h), we introduce a corresponding quantity

indexed by the episode number t (e.g. V̂t,h), defined
as the value of the former at the last communication
round before t (see (27) in Appendix for formal defi-
nitions). Next, following the approach of Azar et al.
(2017), we define δit,h = V̂t,h(sit,h) − V c,πt

1 (sit,h) and
analyze this term independently

δit,h ≤ δit,h+1 + [P̂t,h − P̂c
t,h]V̂t,h+1(s

i
t,h, a

i
t,h)︸ ︷︷ ︸

(A): heterogeneity error

+ζit,h

+ [P̂c
t,h − Pc

h]
[
V̂t,h+1 − V c,⋆

h+1

]
(sit,h, a

i
t,h)︸ ︷︷ ︸

(B): correction error

+2εr

+ [P̂c
t,h − Pc

h]V
c,⋆
h+1(s

i
t,h, a

i
t,h)︸ ︷︷ ︸

(C): concentration error

+bt,h(s
i
t,h, a

i
t,h)

+ [Pc
h − Pih]

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h)︸ ︷︷ ︸

(D): heterogeneity error

,

where ζit,h is a martingale term defined in (54). The

analysis of (C) and ζit,h is standard in the literature.
To bound (A) we employ a combination of (18) and
Holder’s inequality. The bound on (D) also combines
Holder’s inequality and Lemma F.1. The standard re-
cursion argument concludes the proof. □
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Figure 1: Common regret (lower is better) for M =
20 agents as a function of T for different εp: crosses
represent Fed-UCBVI, and circles FedQ-Bernstein.
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Figure 2: Common regret (lower is better), at T =
3 · 104 for GridWorld, and T = 3 · 103 for synthetic
as a function of M for different εp in a log-log scale:
crosses represent Fed-UCBVI, and circles represent
FedQ-Bernstein.

5 EXPERIMENTS

In this section, we study the empirical performance 1 of
Fed-UCBVI, and compare it with the FedQ-Bernstein
algorithm (Zheng et al., 2024a) on two environments.

Environments. We consider two environments
specifically designed to satisfy A-1 and A-2. In both
environments, transitions are defined using two dis-
tinct kernels: with probability 1− εp, the agent follow
the global kernel, and with probability εp, it follows an
individualized kernel. The first environment is based
on GridWorld (Domingues et al., 2021a), where the
agent navigates a grid to reach a target. Upon reach-
ing the target, the agent receives a reward of +1; oth-
erwise, the reward is 0. At each step, the agent selects
one of four possible directions (up, down, left, or right).
Under the global transition kernel, the agent moves to
the intended square with a probability of 0.8, and to a
random neighboring square with the remaining proba-
bility. In the individual transition kernels, the agent’s
movement to neighboring squares follows a probability
distribution unique to each agent. We use a 3× 3 grid
with a wall located at coordinate (1, 1), resulting in
|S| = 8 possible states. The planning horizon is set to
H = 10, with the agent starting at coordinate (0, 0)

1Our code is available online on GitHub: https://
github.com/Labbi-Safwan/Fed-UCBVI

and aiming to reach the target at (2, 2).

The second environment is a synthetic setting, mod-
eled after Zheng et al. (2024a), with |S| = 5, |A| = 5,
and H = 5. All agents share the same reward function
rh(s, a), with rewards drawn uniformly from [0, 1] for
each (s, a, h) ∈ S ×A× [H]. For each s, a, h, the com-
mon and individual transition kernels are drawn uni-
formly at random from the |S|-dimensional simplex.

In all results, we report the common regret instead of
the federated regret to simplify computations. Exper-
iments were conducted on a computer with an Intel
Xeon 6534 and 196GB RAM. We report the average
over 5 runs and the standard deviation in all the plots.
The code is provided in the supplementary material.

Impact of Heterogeneity. In Figure 1, we present
the regret of Fed-UCBVI for various values of εp.
Fed-UCBVI’s regret is significantly lower than that of
FedQ-Bernstein, reflecting similar performance gaps
as observed in the single-agent setting. Moreover, as
predicted by our theoretical analysis, increasing εp
only incurs a slight increase in Fed-UCBVI’s regret, due
to the additional term scaling linearly with T .

Fed-UCBVI has linear speed-up. In Figure 2, we
evaluate the regret after T iterations of training with
varying numbers of agents M across different levels of
heterogeneity. As shown in Theorem 4.1, the regret
decreases as M increases. Notably, this trend persists
even in high-heterogeneity settings, highlighting the
robust empirical performance of our approach.

Fed-UCBVI’s communication complexity is small.
In Figure 3, we observe that the communication com-
plexity of Fed-UCBVI is significantly lower than the
number of iterations T and increases only marginally
with the number of agents M . This aligns with the
results of Lemma 4.1. In contrast, FedQ-Bernstein
exhibits consistently high communication complex-
ity. The reduced communication in Fed-UCBVI results
from our novel method for triggering communication
rounds based on local estimates of global counters, val-
idating the effectiveness of this approach.

6 CONCLUSION

In this paper, we presented Fed-UCBVI, a federated
reinforcement learning method based on a new aggre-
gation strategy that reduces communication cost and
handles heterogeneous agents. We introduced a novel
measure of heterogeneity, under which we provide a
formal analysis of Fed-UCBVI’s regret, showing that it
nearly matches minimax optimal regret bounds. To
our knowledge, this is the first federated regret anal-
ysis with guarantees in heterogeneous environments.
Furthermore, our method provably removes the lin-
ear dependence of the communication complexity on

https://github.com/Labbi-Safwan/Fed-UCBVI
https://github.com/Labbi-Safwan/Fed-UCBVI
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Figure 3: Number of communication (lower is bet-
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3 · 104 for GridWorld, T = 3 · 103 for synthetic:
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M log T . A promising direction for future work is to
reduce the communication cost further, by developing
new methods that correct for heterogeneity.
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Supplementary Materials

A NOTATION

For clarity, we summarize here the notations that we use

Symbols Meaning Definition

C(T ) Number of communication rounds performed in average Section 3
R(T ) Federated regret of the algorithm Equation (4)

S State space Section 3
A Action space Section 3
M Number of agents Section 3
T Total number of collected episodes per agent Section 3
H Length of an episode Section 3

Rmax Maximum number of communication rounds Equation (58)

Pih Transition kernel at step h of agent i Section 3
Pc
h Common transition kernel at step h A-1

P ind,i
h Individual transition kernel at step h A-1
εp Degree of heterogeneity on the transition kernels A-1
εr Degree of heterogeneity on the rewards A-2
rih Reward at step h of agent i Section 3
rch Reward function of the common MDP Equation (16)

Qi,π
h Q-function of a policy π at step h of agent i Equation (2)

Vi,πh Value function of a policy π at step h in the i-th MDP Equation (2)

Qi,⋆
h Optimal Q-function at step h of agent i in the i-th environment Equation (3)

Vi,⋆h Optimal value function at step h of agent i in the i-th environment Equation (3)

ν(δ, T ) Threshold for defining the condition on initiating the aggregation signal Equation (57)

P̂i(r),h Estimated transition kernel during the round r by agent i at step h Equation (9)

P̂c
(r),h Virtual estimate of common transition kernel by agent i at step h Equation (24)

r̂ ih Estimated reward at step h of agent i Fed-UCBVI

ni(r,ℓ),h Local counter of the cumulative number of visits at the level of agent i Fed-UCBVI

N(r),h Global counter of the cumulative number of visits over all the agents Equation (6)

N̂ i
(r,ℓ),h Local estimator of agent i of the true cumulative number of visits Fed-UCBVI

b(r),h Bonus function used in round r and step H Equation (39)

Q̂i
(r),h(s, a) Estimator of the Q-function at the level of agent i Equation (10)

P̂(r),h Weighted average of {P̂i(r),h}i during the round r at step h Equation (24)

Q̂(r),h(s, a) Global estimator of the Q-function Equation (11)

V̂(r),h(s) Global estimator of the value function Equation (13)

VarP̂(r),h
(f)(s, a) Variance of a function f with respect to P̂(r),h(·|s, a) Equation (19)

VarP̂c
(r),h

(f)(s, a) Variance of a function f with respect to P̂c
(r),h(·|s, a) Equation (19)

Table 2: Summary of the notations.



Let (X,X ) be a measurable space. For any probability measures P and Q on (X,X ), and for any f : X → R we
define

Pf := Es∼P[f(s)] , VarP f := Es∼P[(f(s)− Pf)2] . (19)

For any probability measures P and Q on (X,X ), the Kullback-Leibler divergence KL(P∥Q) is given by

KL
(
P
∥∥∥Q) :=

{
EP

[
log dP

dQ

]
, P ≪ Q ,

+∞, otherwise .

Let A be an element of the σ-algebra X . We define the indicator function of A as

1A(·) : X −→ {0, 1}

x 7−→

{
1 if x ∈ A ,

0, otherwise .

We define the indicator function of an element x ∈ X as

1x(·) : X −→ {0, 1}

y 7−→

{
1 if x = y ,

0, otherwise .

We write f(|S|, |A|, H, T,M) = O(g(|S|, |A|, H, T,M, δ)) if there exists S0, A0, H0, T0, δ0 and a constant C
such that for any |S| ≥ S0, |A| ≥ A0, H ≥ H0, T ≥ T0, and δ ≤ δ0, we have f(|S|, |A|, H, T,M) ≤
C · g(|S|, |A|, H, T,M, δ). We say that f(|S|, |A|, H, T,M) = Õ(g(|S|, |A|, H, T,M, δ)) if in the previous bound
C is a poly-logarihmic function with respect to the variables |S|, |A|, H, T,M, δ.

For a ∈ N, define [a] as the set of all natural numbers from 1 to a:

[a] := {k ∈ N | 1 ≤ k ≤ a}.

Additionally, for (a, b) ∈ N × N̄, where N̄ = N ∪ {+∞}, such that a ≤ b, define the set [[a, b]] as the set of all
natural numbers between a and b, inclusive:

[[a, b]] := {k ∈ N | a ≤ k ≤ b}.

B PSEUDO CODE

For clarity of exposition, we provide the complete pseudo-code of the server-side and client-side algorithms in
Algorithm 2 and Algorithm 3.

C CONCENTRATION EVENTS

Before we proceed, let us define several essential quantities.

Change of epoch notation We notice that the set of all regular episodes t ∈ [T ] is separated into a sequence
of different random epochs E1,E2, . . .. To define them properly, let us define the epoch-changing timestamps as
follows

T1 := 0, Tr+1 := min{t > Tr | Syncr(t) = True}. (20)

where the epoch-switching predicate is defined as

Syncr(t) =

{
∃i ∈ [M ] : ni(r,ℓ),h(s

i
t,h, a

i
t,h) ≥ 2ni(r),h(s

i
t,h, a

i
t,h) if N(r),h(s

i
t,h, a

i
t,h) < ν(δ, T )

∃i ∈ [M ] : N̂ i
(r,ℓ),h(s

i
t,h, a

i
t,h) ≥ 2N(r),h(s

i
t,h, a

i
t,h) if N(r),h(s

i
t,h, a

i
t,h) ≥ ν(δ, T )

, (21)

for ℓ = t − Tr − 1 and ν(δ, T ) is defined in (57). In particular, this condition exactly corresponds to the
synchronization condition used by Fed-UCBVI. Then, the epoch Er is defined as Er := [[Tr + 1;Tr+1]]. In
particular, for any t ∈ [T ], we define rt as a unique index r such that t ∈ Er:

rt = min{r ≥ 1 | t > Tr}. (22)



Algorithm 2: Fed-UCBVI (Central Server)

Initialize: t = 1, r = 1, N(1),h(s, a) = 0, Q̂(1),h(s, a) = V̂(1),h(s) = H for all (s, a, h) ∈ S ×A× [H],

π(1) = {π(1),h}1≤h≤H an arbitrary deterministic policy
while t ≤ T do

Broadcast π(r) = {π(r),h}1≤h≤H , {N(r),h}1≤h≤H , r, and t to all clients;
Wait until receiving the synchronization signal and an updated episode number t and forward the
abortion signal to all clients;

Set V̂(r+1),H+1(s) = 0 for all s ∈ S and send it to all clients;
for h = H to 1 do

Receive {Q̂i
(r+1),h}i, {n

i
(r+1),h}i,{P̂

i
(r+1),hV̂(r+1),h+1(s, a)}s,a,i, and {P̂i(r+1),hV̂

2
(r+1),h+1(s, a)}s,a,i

from the different clients;
for (s, a) ∈ S ×A do

Compute N = N(r+1),h(s, a) =
∑M
i=1 n

i
(r+1),h(s, a);

Set ni = ni(r+1),h(s, a) for i ∈ [M ];

Set V := VarP̂(r)
(V̂(r),h+1)(s, a) =

1

N

M∑
i=1

niP̂i(r+1),hV̂
2
(r+1),h+1(s, a)

−

(
1

N

M∑
i=1

niP̂i(r+1),hV̂(r+1),h+1(s, a)

)2

Compute b(r),h(s, a) =

{
28β⋆(δ)H+11βc(δ,N)

N +
√

8β⋆(δ)
N · V , N ≥ 2 ,

H , N ≤ 1 ;

Set Q̂(r+1),h(s, a) =

{
min

(∑M
i=1

ni

N Q̂i
(r+1),h(s, a) + b(r+1),h(s, a), H

)
if N > 0 ,

H otherwise;

for s ∈ S do

Compute V̂(r+1),h(s) = maxa∈A Q̂(r+1),h(s, a);

Compute π(r+1),h(s) = argmaxa∈A Q̂(r+1),h(s, a);

Broadcast V̂(r+1),h to all clients;

Set r = r + 1;

Send a signal to inform the clients of the end of training.

Definitions First of all, let us recall that by A-1 the transition kernel Pih for the agent i is a mixture of common

kernel Pc
h and individual kernel P ind,i

h , thus any sample sit,h+1 ∼ Pih(s
i
t,h, a

i
t,h) for (t, h, i) ∈ [T ] × [H] × [M ] can

be represented via the following experiment

sit,h+1 =

{
sc,it,h+1 ∼ Pc

h(s
i
t,h, a

i
t,h) , ξit,h = 0 ,

sind,it,h+1 ∼ P ind,i
h (sit,h, a

i
t,h) , ξit,h = 1 ,

(23)

where ξit,h ∼ Ber(εp) is a choice of component of the mixture. Using this representation, we can define a virtual
estimate of the common kernel for a step t as follows

P̂c
(r),h(s

′|s, a) := 1

N(r),h(s, a)

M∑
i=1

Tr∑
t=1

1(s,a,s′)(s
i
t,h, a

i
t,h, s

c,i
t,h+1) , (24)

where Tr is defined in (20). We emphasize that P̂c
(r),h is never computed explicitly by the algorithm since the

values of ξit,h are never observed, however we are very interested in the analysis of it.



Algorithm 3: Fed-UCBVI (i-th Client Side)

Initialize: ni(1,0),h(s, a) = 0, r̂ ih(s, a) = 0, ni(1,0),h(s, a, s
′) = 0 for all (s, a, s′, h) ∈ S ×A× S × [H];

Compute ν(δ, T ) = 14εpTHM + 182Mβc(δ, T );
while signal of end of training not received do

Receive {π(r),h}1≤h≤H , (N(r),h)1≤h≤H , r, and t from the central server;
Set ℓ = 1;
Set N̂ i

(r,0),h(s, a) = N(r),h(s, a) for all (s, a, h) ∈ S ×A× [H];

Set ni(r,0),h(s, a) = ni(r),h(s, a) for all (s, a, s
′, h) ∈ S ×A× S × [H];

while no synchronization signal from central server and t ≤ T do
synchronize = False;
while synchronize = False do

Collect a new trajectory (sit,h, a
i
t,h, r

i
t,h)1≤h≤H using the policy π(r);

for h = 1 to H do
Set r̂ ih(s

i
t,h, a

i
t,h) = rit,h;

Set ni(r,ℓ),h(s, a) = ni(r,ℓ−1),h(s, a) + 1(s,a)(s
i
t,h, a

i
t,h) for (s, a) ∈ S ×A ;

ni(r,ℓ),h(s, a, s
′) = ni(r,ℓ−1),h(s, a, s

′) + 1(s,a,s′)(s
i
t,h, a

i
t,h, s

i
t,h+1) for (s, a, s

′) ∈ S ×A× S ;

Set N̂ i
(r,ℓ),h(s, a) = N̂ i

(r,ℓ−1),h(s, a) +M1(s,a)(s
i
t,h, a

i
t,h) for (s, a) ∈ S ×A;

if N(r),h(s
i
t,h, a

i
t,h) < ν(δ, T ) and ni(r,l),h(s

i
t,h, a

i
t,h) ≥ 2ni(r),h(s

i
t,h, a

i
t,h) then

synchronize = True;

else if N(r),h(s
i
t,h, a

i
t,h) ≥ ν(δ, T ) and N̂ i

(r,l),h(s
i
t,h, a

i
t,h) ≥ 2N(r),h(s

i
t,h, a

i
t,h) then

synchronize = True;

Set ℓ = ℓ+ 1 and t = t+ 1;
;

Send an abortion signal and an episode number t to the central server;

Set ni(r+1),h(s, a) = ni(r,ℓ),h(s, a) and n
i
(r+1),h(s, a, s

′) = ni(r,ℓ),h(s, a, s
′) for all (s, a, s′) ∈ S ×A× S;

Set P̂i(r+1),h(s
′|s, a) =


ni
(r+1),h(s,a,s

′)

ni
(r+1),h

(s,a)
if , ni(r+1),h(s, a) > 0

1
|S| else;

for h = H to 1 do

Receive V̂(r+1),h+1 from the central server;

Compute Q̂i
(r+1),h(s, a) = r̂ih(s, a) + P̂i(r+1),hV̂(r+1),h+1(s, a) for all (s, a, s

′) ∈ S ×A× S;
Send Q̂i

(r+1),h, n
i
(r+1),h,{P̂

i
(r+1),hV̂(r+1),h+1(s, a)}s,a, and {P̂i(r+1),hV̂

2
(r+1),h+1(s, a)}s,a to the

central server.

Additionally, let us define the weighted average kernel

P̂(r),h(s
′|s, a) :=

N∑
i=1

ni(r),h(s, a)

N(r),h(s, a)
P̂i(r),h(s

′|s, a) =
N(r),h(s, a, s

′)

N(r),h(s, a)
, (25)

where N(r),h(s, a) =
∑M
i=1 n

i
(r),h(s, a) was defined in (6), and P̂i(r),h was defined in (9) as

P̂i(r),h(s
′|s, a) =


ni
(r),h(s,a,s

′)

ni
(r),h

(s,a)
if ni(r),h(s, a) > 0

1
|S| else

. (26)

Notably, the kernel P̂(r),h is never revealed to any agent or to a central server, but it is very useful in the analysis.
Also, for any time t we define rt as an index of the previous epoch. For convenience and ease of reading, we
introduce the transition kernels and counters in the regular timescale

P̂it,h := P̂i(rt),h , P̂t,h := P̂(rt),h
nit,h = ni(rt),h , and N

i
t,h = N i

(rt),h
, (27)



where rt is defined in (22).

Let βKL, βc, βVar : (0, 1) × N → R+ and β⋆, β, βmax : (0, 1) → R+ be some functions defined later on in Lemma
C.1, and Rmax be the maximal number of communications defined (58). We define the following favorable events

EKL(δ) :=

{
∀r ∈ N,∀h ∈ [H],∀(s, a) ∈ S ×A : KL

(
P̂c
(r),h(s, a)

∥∥∥Pc
h(s, a)

)
≤

|S|βKL(δ,N(r),h(s, a))

N(r),h(s, a)

}
,

Ec(δ) :=

{
∀r ∈ [Rmax],∀h ∈ [H],∀(s, a) ∈ S ×A :

∥∥∥P̂(r),h(s, a)− P̂c
(r),h(s, a)

∥∥∥
1
≤ 9

8
εp +

11βc(δ,N(r),h(s, a))

N(r),h(s, a)

}
,

E⋆(δ) :=

{
∀r ∈ [Rmax],∀h ∈ [H],∀(s, a) ∈ S ×A :

∣∣∣[P̂c
(r),h − Pc

h]V
c,⋆
h+1(s, a)

∣∣∣
≤ 1[[2;+∞]](N(r),h(s, a))

(√√√√2VarP̂c
(r),h

(V c,⋆
h+1)(s, a)β

⋆(δ)

N(r),h(s, a)− 1
+

7β⋆(δ)

N(r),h(s, a)− 1

)
+H1[[0;2]](N(r),h(s, a))

}
,

EVar(δ) :=

∀t ∈ [T ] :

(t,H,M)∑
(t′≥1,h≥1,i≥1)

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

)
≤
√
2H5MtβVar(δ, t) + 3H3βVar(δ, t) +H2Mt

 ,

Ecount(δ) :=

{
∀t ∈ [T ],∀h ∈ [H],∀(s, a) ∈ S ×A,∀i ∈ [M ] : |Ñ M

t,h (s, a)− N̂ i
t,h(s, a)|

≤ 2

7
N̂ i
t,h(s, a) + 2εpTHM + 26Mβc(δ, T )

}
,

E(δ) :=

{
∀h ∈ [H] :

(T,H,M)∑
(t≥1,h′≥h,i≥1)

γh′−1

(
Pih′

[
V̂t,h′+1 − V c,πt

h′+1

]
(sit,h′ , ait,h′)−

[
V̂t,h′+1 − V c,πt

h′+1

]
(sit,h′+1)

)

≤
√
8e2H2 · THM · β(δ), γh :=

(
1 +

1

H

)H−h

, and

(T,H,M)∑
(t≥1,h′≥h,i≥1)

(
Pih′

[
V̂t,h′+1 − V c,πt

h′+1

]
(sit,h′ , ait,h′)−

[
V̂t,h′+1 − V c,πt

h′+1

]
(sit,h′+1)

)
≤
√
8H2 · THM · β(δ)

}
.

We also introduce the intersection of these events, G(δ) := EKL(δ) ∩ Ec(δ) ∩ E⋆(δ) ∩ EVar(δ) ∩ Ecount(δ) ∩ E(δ).
We prove that for the right choice of the functions βKL, βc, β⋆, βVar, and β the above events hold with high
probability.

Lemma C.1. For any δ ∈ (0, 1) and for the following choices of functions β,

βKL(δ, n) := log(6|S||A|H/δ) + log (e(1 + n)) , βc(δ, n) := log(6|S||A|H/δ) + log (6e(2n+ 1)) ,

β⋆(δ) := log(12|S||A|H/δ) , βVar(δ, t) := log (24e(2Mt+ 1)/δ) ,

β(δ) := log(48H/δ) .

it holds that

P[EKL(δ)] ≥ 1− δ/6, P[Ec(δ)] ≥ 1− δ/6, P[E⋆(δ)] ≥ 1− δ/6, P[EVar(δ)] ≥ 1− δ/6,

P[Ecount(δ)] ≥ 1− δ/6, P[E(δ)] ≥ 1− δ/6 .

In particular, P[G(δ)] ≥ 1− δ.

Proof. First, let us define an appropriate filtration for martingale and optional skipping-based arguments. A
natural federated online filtration is defined as

F i
t,h = σ

(
{si

′

t′,h′ai
′

t′,h′}(t′,h′,i′)⪯(t,h,i)

)
, (28)



where the order over triplets (t′, h′, i′) is lexicographic. With respect to this filtration, for any fixed state-action-
step triplet (s, a, h) ∈ S ×A× [H] we define the partial global counters that form a sequence of excursion times
on an extended time (t, i) ∈ N× [M ] and a first extended timestamp to reach a particular partial counter value
j ∈ [T ·M ]

Ñ i
t,h(s, a) =

∑
(t′,i′)⪯(t,i)

1(s,a)(s
i
t,h, a

i
t,h) , (ts,a,h,j , is,a,h,j) := min{(t, i) ∈ N× [M ] | Ñ i

t,h(s, a) = j} . (29)

For a given time t, we also define ψt := Trt representing the number of episodes visited before rt. In particular,

we have N(r),h(s, a) = Ñ M
Tr,h

(s, a).

Event EKL(δ) To analyze it, we need first to represent the virtual estimate of the common transition kernel as
follows

P̂c
(r),h(s

′|s, a) = 1

N(r),h(s, a)

Tr∑
t=1

M∑
i=1

1(s,a)(s
i
t,h, a

i
t,h)1s′(s

c,i
t,h+1)

=
1

N(r),h(s, a)

N(r),h(s,a)∑
j=1

1s′(s
c,is,a,h,j

ts,a,h,j ,h+1) . (30)

By the optional skipping argument (see, e.g., Doob, 1953, Chapter III, p. 145), the sampled states

{s̃ c
s,a,h,j}j∈[TM ] := {sc,is,a,h,j

ts,a,h,j ,h+1}j∈[TM ], conditioned on the value of N(r),h(s, a), form an i.i.d. sequence of

categorical random variables from the distribution Pc
h(s, a). Thus, we have for any fixed (s, a, h) ∈ S ×A× [H]

by Lemma F.4

P
[
∃r ≥ 1 : KL

(
P̂c
(r),h(s, a)

∥∥∥Pc
h(s, a)

)
≤ log(6|S||A|H/δ) + |S| log (e(1 + n))

N(r),h(s, a)

]
≤ δ

6|S||A|H
.

By a union bound argument and noticing that log(6|S||A|H/δ) + |S| log (e(1 + n)) ≤ |S|βKL(δ, n), we conclude
the first statement.

Event Ec(δ) By a union bound argument, it is enough to show that each of the following events

E c
(δ, s, a, h) =

{
∃r ∈ [Rmax] :

∥∥∥P̂(r),h(·|s, a)− P̂c
(r),h(·|s, a)

∥∥∥
1
≥ 9

8
εp +

11βc(δ,N(r),h(s, a))

N(r),h(s, a)

}
holds with probability less or equal than δ′ := δ/(6|S||A|H) for any (s, a, h) ∈ S × A × [H]. To do it, let us
analyze the difference between kernels. By the definitions (24)-(25):

[P̂(r),h − P̂c
(r),h](s

′|s, a) = 1

N(r),h(s, a)

M∑
i=1

Tr∑
t=1

(
1(s,a,s′)(s

i
t,h, a

i
t,h, s

i
t,h)− 1(s,a,s′)(s

i
t,h, a

i
t,h, s

c,i
t,h)
)
.

Next, we notice that, using representation (23), we can rewrite the first indicator as follows

1(s,a,s′)(s
i
t,h, a

i
t,h, s

i
t,h) = (1− ξit,h) · 1(s,a,s′)(sit,h, ait,h, s

c,i
t,h) + ξit,h1(s,a,s′)(s

i
t,h, a

i
t,h, s

ind,i
t,h ) ,

thus, we have the following expression for the difference between kernels

[P̂(r),h − P̂c
(r),h](s

′|s, a) = 1

N(r),h(s, a)

M∑
i=1

Tr∑
t=1

ξit,h1(s,a)(s
i
t,h, a

i
t,h) ·

(
1s′(s

ind,i
t,h )− 1s′(s

c,i
t,h)
)
,

and thus, using |1s′(sind,it,h )− 1s′(s
c,i
t,h)| ≤ 1 and Definition (29), we obtain

∥∥∥[P̂(r),h − P̂c
(r),h](s, a)

∥∥∥
1
≤ 1

N(r),h(s, a)

Tr∑
t=1

M∑
i=1

ξit,h1(s,a)(s
i
t,h, a

i
t,h) =

1

N(r),h(s, a)

N(r),h(s,a)∑
j=1

ξ
is,a,h,j

ts,a,h,j
. (31)

Again, by the optional skipping argument, conditioned on the event N(r),h(s, a) = N the sequence

{ξ̃s,a,h,j}j∈[TM ] := {ξis,a,h,j

ts,a,h,j
}j∈[TM ] is i.i.d., thus Corollary F.1 implies

P[E c
(δ, s, a, h)] ≤ P

∃N ≥ 1 :

N∑
j=1

ξ̃s,a,h,j >
9

8
Nεp + 11 log

(
24|S||A|He(2N + 1)

δ

) ≤ δ

6|S||A|H
.



Event E⋆(δ) To analyze this event, we use the representation of the kernel (30) and optional skipping argument
conditioned on N(r),h(s, a) = N where N ≥ 2

[P̂c
(r),h − Pc

h]V
c,⋆
h+1(s, a) =

1

N

N∑
j=1

V c,⋆
h+1(s

c
s,a,h,j)− Pc

hV
c,⋆
h+1(s, a) .

Thus, we have a sum of centered i.i.d. random variables, and thus we can apply Lemma F.7

P

∣∣∣[P̂c
(r),h − Pc

h]V
c,⋆
h+1(s, a)

∣∣∣ ≥
√

2VarP̂c
(r),h

(V c,⋆
h+1)(s, a)β

⋆(δ)

N − 1
+

7β⋆(δ)

N − 1

∣∣∣∣∣N(r),h(s, a) = N

 ≤ δ

6|S||A|HT
,

where β⋆(δ) = log(12|S||A|H/δ). We then conclude by a union bound over (s, a, h,N) ∈ S × A × [H] ×
{2, . . . ,MT}. If N(r),h(s, a) ≤ 1, we have the trivial bound

∣∣∣[P̂c
(r),h − Pc

h]V
c,⋆
h+1(s, a)

∣∣∣ ≤ H.

Event EVar(δ) For any t′ ∈ [T ], define

Xi
t′ =

H∑
h=1

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

)
− σVi,πt′

1

(
sit′,1

)
,

where σVi,πt′
1 is defined in (59). This sequence forms a martingale-difference sequence with respect to the

following filtration

F i
t = σ

(
{si

′

t′,ha
i′

t′,h}(t′,i′)⪯(t,i),h∈[H]

)
,

where the order over the pairs (t′, i′) is lexicographic. Applying Theorem F.1 yields

P

∃t ≥ 1,

(t,M)∑
(t′≥1,i≥1)

Xi
t′ ≤

√√√√√2

(t,M)∑
(t′≥1,i≥1)

Eπ[(Xi
t′)

2 | F iprev
t′prev

] log (24e(2Mt+ 1)/δ) + 3H3 log (24e(2Mt+ 1)/δ)

 ≤ δ

6
,

as we have |Xi
t′ | ≤ H3 and where (t′prev, iprev) is a previous element in a lexicographic order with respect to

(t′, i). Now, we bound the conditional second-order moment of Xi
t′ as follows

Eπt′ [(X
i
t′)

2 | F iprev

t′prev
] ≤ Eπt′

( H∑
h=1

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

))2
∣∣∣∣∣∣F i−1
t

 ≤ H3Eπt′

[
H∑
h=1

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

)]
.

By Lemma F.3, we have

Eπt′

[
H∑
h=1

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

)]
= Eπt′

( H∑
h=1

rih(s
i
h, a

i
h)− Vi,πt′

1 (si1)

)2
 ≤ Eπt′

( H∑
h=1

rih(s
i
h, a

i
h)

)2
 ≤ H2 .

By combining the previous inequalities, we obtain

(t,M)∑
(t′≥1,i≥1)

Xi
t′ ≤

√
2H5Mt log (24e(2Mt+ 1)/δ) + 3H3 log (24e(2Mt+ 1)/δ)

Now using Lemma F.3 again we get

(t,M)∑
(t′≥1,i≥1)

H∑
h=1

VarPi
h
(Vi,πt′
h+1 )

(
sit′,h, a

i
t′,h

)
=

(t,M)∑
(t′≥1,i≥1)

Xi
t′ + σVi,πt′

1

(
sit′,1

)
≤
√
2H5Mt log (24e(2Mt+ 1)/δ) + 3H3 log (24e(2Mt+ 1)/δ) +H2Mt .



Event Ecount(δ) For any fixed (s, a, h, i, t1) ∈ S ×A× [H]× [M ]× [T ], we have by Corollary F.1

P
[
∃t2 ∈ N :

∣∣∣∣∣
t2∑

t′=t1

1(s,a)(s
i
t′,h, a

i
t′,h)− d

i,πt′
h (s, a)

∣∣∣∣∣
≥ 1

8

t2∑
t′=t1

d
i,πt′
h (s, a) + 11βc(δ, t2 − t1 + 1)

]
≤ δ

6|S||A|MTH
,

holds with probability less or equal than δ′ := δ/(6|S||A|MTH). Thus, by a union bound argument, the following
event

E dev
(δ) :=

{
∀(t1, t2) ∈ [T ]2,∀h ∈ [H],∀(s, a) ∈ S ×A,∀i ∈ [M ] :

∣∣∣∣∣
t2∑

t′=t1

1(s,a)(s
i
t′,h, a

i
t′,h)− d

i,πt′
h (s, a)

∣∣∣∣∣
≥ 1

8

t2∑
t′=t1

d
i,πt′
h (s, a) + 11βc(δ, t2 − t1 + 1)

}
,

holds with probability less or equal to δ/6. Now, to conclude the proof, it is enough to show Ecount(δ) ⊂ E dev(δ).
Let’s recall the definition of the estimated counter by agent i

N̂ i
t,h(s, a) = N(rt),h(s, a) +M

t∑
t′=ψt

1(s,a)(s
i
t′,h, a

i
t′,h) .

Using (29), the definition of N̂ i
t,h(s, a), and the triangular inequality, we have for any fixed (s, a) ∈ S ×A,

|Ñ M
t,h (s, a)− N̂ i

t,h(s, a)| =

∣∣∣∣∣∣
∑
j ̸=i

t∑
t′=ψt

1(s,a)(s
j
t′,h, a

j
t′,h)− 1(s,a)(s

i
t′,h, a

i
t′,h)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑
j ̸=i

t∑
t′=ψt

1(s,a)(s
j
t′,h, a

j
t′,h)− d

j,πt′
h (s, a)

∣∣∣∣∣∣︸ ︷︷ ︸
(1)

+

∣∣∣∣∣∣
∑
j ̸=i

t∑
t′=ψt

d
j,πt′
h (s, a)− d

i,πt′
h (s, a)

∣∣∣∣∣∣︸ ︷︷ ︸
(2)

+ (M − 1)

∣∣∣∣∣∣
t∑

t′=ψt

d
i,πt′
h (s, a)− 1(s,a)(s

i
t′,h, a

i
t′,h)

∣∣∣∣∣∣︸ ︷︷ ︸
(3)

.

Term (2): Heterogeneity error Using Lemma F.2 combined with the triangular inequality, it holds that

(2) =

∣∣∣∣∣∣
∑
j ̸=i

t∑
t′=ψt

d
j,πt′
h (s, a)− d

i,πt′
h (s, a)

∣∣∣∣∣∣ ≤ εpHMT .

Terms (1) and (3): concentration error On the event E dev(δ), we can bound (1) as follows

(1) ≤
∑
j ̸=i

t∑
t′=ψt

∣∣∣1(s,a)(sjt′,h, ajt′,h)− d
j,πt′
h (s, a)

∣∣∣
≤
∑
j ̸=i

1

8

t∑
t′=ψt

d
j,πt′
h (s, a) + 11Mβc(δ, T )

≤ 1

8

∑
j ̸=i

∣∣∣∣∣∣
t∑

t′=ψt

d
j,πt′
h (s, a)− d

i,πt′
h (s, a)

∣∣∣∣∣∣︸ ︷︷ ︸
(2)

+11Mβc(δ, T ) +
M

8

t∑
t′=ψt

d
i,πt′
h (s, a) .



Now using the latter bound on (2) combined with the inequality 7
8

∑t
t′=ψt

d
i,πt′
h (s, a) − 11βc(δ, T ) ≤∑t

t′=ψt
1(s,a)(s

i
t′,h, a

i
t′,h) that follows from Edev(δ), we get

(1) ≤ 1

8
εpHMT +

88M

7
βc(δ, T ) +

1

7
N̂ i
t,h(s, a) .

We proceed similarly to bound (3)

(3) = (M − 1)

∣∣∣∣∣∣
t∑

t′=ψt

d
i,πt′
h (s, a)− 1(s,a)(s

i
t′,h, a

i
t′,h)

∣∣∣∣∣∣
≤ M

8

t∑
t′=ψt

d
j,πt′
h (s, a) + 11Mβc(δ, T ) ≤ 1

7
N̂ i
t,h(s, a) +

88M

7
βc(δ, T ) .

Finally combining the bounds on (1), (2) and (3) yields the desired result.

Event E(δ) Notice that the two following sequences

Xi
t,h :=

(
1 +

1

H

)H−h′−1 (
Pih

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h)−

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h+1)

)
,

Y it,h := Pih

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h)−

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h+1) ,

forms a martingale-difference sequence with respect to filtration F i
t,h defined in (28). Thus, applying Azuma-

Hoeffding inequality with a union bound over h and over the two events allows us to conclude the statement.

Lemma C.2. Conditioned on EKL(δ), for any function f : S 7→ [0, H], h ∈ [H], (s, a) ∈ S × A, and any
r ∈ [Rmax], we have

(P̂c
(r),h − Pc

h)f(s, a) ≤
1

H
Pc
hf(s, a) +

2H2|S|βKL(δ,N(r),h(s, a))

N(r),h(s, a)
,

∥P̂c
(r),h − Pc

h∥1 ≤

√
2|S|βKL(δ,N(r),h(s, a))

N(r),h(s, a)
.

Proof. Using Lemma F.5 with P = P̂c
(r),h(·|s, a) and Q = Pc

h(·|s, a) it holds that

(P̂c
(r),h − Pc

h)f(·|s, a) ≤
√
2VarPc

h(·|s,a)(f)KL
(
P̂c
(r),h(·|s, a)

∥∥Pc
h(·|s, a)

)
+
2

3
HKL

(
P̂c
(r),h(·|s, a)

∥∥Pc
h(·|s, a)

)
. (32)

Now, since f ’s values are in [0, H], we can write

VarPc
h(·|s,a)(f) ≤ Pc

h(f
2)(s, a) ≤ HPc

h(f)(s, a) . (33)

Combining the latter inequality with the fact that for all a, b ≥ 0,
√
2ab ≤ a+ b, we obtain√

2VarPc
h(·|s,a)(f)KL

(
P̂c
(r),h(·|s, a)

∥∥Pc
h(·|s, a)

)
=

√
2

H
Pc
h(f)(s, a) ·H2KL

(
P̂c
(r),h(·|s, a)

∥∥Pc
h(·|s, a)

)
≤ 1

H
Pc
h(f)(s, a) +H2KL

(
P̂c
(r),h(·|s, a)

∥∥Pc
h(·|s, a)

)
. (34)

Furthermore, since EKL(δ) holds, we have the inequality KL
(
P̂c
(r),h(s, a)

∥∥∥Pc
h(s, a)

)
≤ |S|βKL(δ,N(r),h(s,a))

N(r),h(s,a)
. Plug-

ging this bound in (34), we can upper bound (32) as

(P̂c
(r),h − Pc

h)f(·|s, a) ≤
1

H
Pc
h(f)(s, a) +H2 |S|β

KL(δ,N(r),h(s, a))

N(r),h(s, a)
+

2H

3

|S|βKL(δ,N(r),h(s, a))

N(r),h(s, a)
,

which gives the result. The second inequality follows from the combination of Pinsker inequality and the definition
of EKL(δ).



D REGRET ANALYSIS

We define the common MDP Mc as

Mc := (S,A, H, {rch :=
1

M

M∑
i=1

rih}h, {Pc
h}h) . (35)

We denote by V c,⋆
h and Qc,⋆

h the value function and the Q-function at step h in the common environment Mc. In
particular, these functions satisfy Bellman’s equations and Bellman’s optimality equations (Sutton and Barto,
2018)

Qc,π
h (s, a) = rch(s, a) + Pc

hV
c,π
h+1(s, a) , V c,π

h (s) = Qc,π
h (s, πh(s)) (36)

Qc,⋆
h (s, a) = rch(s, a) + Pc

hV
c,⋆
h+1(s, a) , V c,⋆

h (s) = max
a∈A

Qc,⋆
h (s, a) , (37)

D.1 Optimism

Let us define the following event

Eoptimism =

{
∀r ∈ [Rmax],∀(s, a, h) ∈ S ×A× [H] : V̂(r),h(s) ≥ V c,⋆

h (s)− (2εr + 3εpH)(H + 1− h),

Q̂(r),h(s, a) ≥ Qc,⋆
h (s, a)− (2εr + 3εpH)(H + 1− h)

}
.

Then, we will show that this event holds on event G(δ). To prove the optimism of our estimates, we use the
same monotonicity arguments as in Zhang et al. (2021), see also Zhang et al. (2024b). Define

g(P, f, α) = Pf +max(
√
αVarP(f), αH) , (38)

where P be is a probability measure on S, f ∈ R|S| is a non negative vector satisfying ∥f∥∞ ≤ H, and α is a
positive real number.

Lemma D.1 (Lemma 14 by Zhang et al. 2021). The function g is non-decreasing in each entry of f .

For completeness, we provide the proof below.

Proof. To justify this claim, consider any s ∈ S, and let us fix P, α and all but the s-th entries of f . It then
suffices to observe that (i) g is a differentiable almost anywhere function, and (ii) except for at most two possible
choices of f(s) that obey

√
αVarP(f) = αH, one can use the properties of P and f to calculate

∂g(P, f, α)

∂f(s)
= P(s) +

√
α1
{√

αVarP(f) ≥ αH
} P(s)(f(s)− Es′∼P[f(s

′)])√
VarP(f)

= P(s) + 1
{√

αVarP(f) ≥ αH
} αH√

αVarP(f)
· P(s)(f(s)− Es′∼P[f(s

′)])

H

≥ min

{
P(s) + P(s)

(f(s)− Es′∼P[f(s
′)])

H
,P(s)

}
≥ P(s)min

{
H + f(s)− Es′∼P[f(s

′)]

H
, 1

}
≥ 0 ,

where in the end we used the fact that ∥f∥∞ ≤ H.

We define the bonus function as

b(r),h(s, a) :=

{
28β⋆(δ)H+11βc(δ,N)

N +
√

8β⋆(δ)
N ·VarP̂(r)

(V̂(r),h+1)(s, a) , N ≥ 2

H , N ≤ 1
(39)

for N = N(r),h(s, a) and where β⋆ and βc are defined in Lemma C.1.

Lemma D.2. Under conditions of Lemma C.1, it holds Eoptimism ⊆ G(δ) for any δ ∈ (0, 1).

Proof. We process the proof by backward induction over h.



Base case For h = H + 1 and for all (s, a, r) ∈ S ×A× [Rmax], we have

V̂(r),h(s) = 0 ≥ V c,⋆
h (s)− 0 = 0 and Q̂(r),h(s, a) = 0 ≥ Qc,⋆

h (s, a)− 0 = 0 ,

which gives the desired result.

Induction Let h ∈ [H] such that for all (s, a, r) ∈ S ×A× [Rmax] and h
′ ≥ h

V̂(r),h′(s) ≥ V c,⋆
h′ (s)− (2εr + 3εpH)(H + 1− h) , and (40)

Q̂(r),h′(s, a) ≥ Qc,⋆
h′ (s, a)− (2εr + 3εpH)(H + 1− h) . (41)

First, let us consider a trivial case Q̂(r),h(s, a) = H. The result is trivial since H ≥ Qc,⋆
h (s, a).

Next, we assume that Q̂(r),h(s, a) < H. In particular, by the definition of bonuses, it automatically follows that

N(r),h(s, a) ≥ 2. In this case, according to the update rule (11), we have

Q̂(r),h(s, a) ≥
M∑
i=1

ni(r),h(s, a)

N(r),h(s, a)
Q̂i

(r),h(s, a) + b(r),h(s, a)

=

M∑
i=1

ni(r),h(s, a)

N(r),h(s, a)
r̂ ih(s, a) + P̂(r),hV̂(r),h+1(s, a) + b(r),h(s, a)

=
1

M

M∑
i=1

rih(s, a) + Pc
hV

c,⋆
h+1(s, a) + b(r),h(s, a) +

M∑
i=1

ni(r),h(s, a)

N(r),h(s, a)
r̂ ih(s, a)−

1

M

M∑
i=1

rih(s, a)︸ ︷︷ ︸
(I)

+ P̂(r),h(V̂(r),h+1(s, a)− V c,⋆
h+1(s, a))︸ ︷︷ ︸

(II)

+(P̂(r),h − P̂c
(r),h)V

c,⋆
h+1(s, a)︸ ︷︷ ︸

(III)

+(P̂c
(r),h − Pc

h)V
c,⋆
h+1(s, a)︸ ︷︷ ︸

(IV)

. (42)

Terms (I) and (III): heterogeneity errors First, let us handle the terms that come from the presence of
heterogeneity between agents. To analyse (I), recall that since for all (s, a, i, h, r) ∈ S ×A× [M ]× [H]× [Rmax],
either 1) ni(r),h(s, a) = 0 and the value of r̂ ih(s, a) is ignored in the weighted sum, or 2) ni(r),h(s, a) > 0 and

r̂ ih(s, a) = rih(s, a). Thus,
∑M
i=1

ni
(r),h(s,a)

N(r),h(s,a)
r̂ ih(s, a) is a convex combination of the true rewards over i, which

ensures that

(I) =

M∑
i=1

ni(r),h(s, a)

N(r),h(s, a)
r̂ ih(s, a)−

1

M

M∑
i=1

rih(s, a) ≥ −2εr . (43)

Conditioned on Ec(δ), Hölder’s inequality yields the following bound on (III)

(III) = (P̂(r),h − P̂c
(r),h)V

c,⋆
h+1(s, a) ≥ −∥P̂(r),h − P̂c

(r),h∥1 · ∥V
c,⋆
h+1∥∞ ≥ −2εpH −

11βc(δ,N(r),h(s, a))

N(r),h(s, a)
H . (44)

Term (II): correction error To control this term, we aim to apply Lemma D.1. We first define the shifted
estimator V̄(r),h+1 as

V̄(r),h+1(s) := V̂(r),h+1(s) + (2εr + 3εpH)(H − h) . (45)

By the induction hypothesis (40), we know that V̄(r),h+1(s) ≥ V c,⋆
h+1(s, a). We decompose further (II) as

(II) = P̂(r),hV̂(r),h+1(s, a)− P̂(r),hV
c,⋆
h+1(s, a)

≥ P̂(r),hV̄(r),h+1(s, a) + max

(√√√√4β⋆(δ)VarP̂(r)
(V̄(r),h+1(s))(s, a)

N(r),h(s, a)
,
4β⋆(δ)H)

N(r),h(s, a)

)
− P̂(r),hV

c,⋆
h+1(s, a)



−

√√√√4β⋆(δ)VarP̂(r)
(V̄(r),h+1(s))(s, a)

N(r),h(s, a)
− 4β⋆(δ)H

N(r),h(s, a)
− (2εr + 3εpH)(H − h) ,

where we used in the last inequality that for any a, b ∈ R+,max(a, b) ≤ a+b and the fact that P̂(r),hV̂(r),h+1(s, a)−
P̂(r),hV̄(r),h+1(s, a) = −(2εr + 3εpH)(H − h). Now by applying Lemma D.1, we get

(II) ≥ max

(√√√√4β⋆(δ)VarP̂(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)
,

4β⋆(δ)H

N(r),h(s, a)

)
−

√√√√4β⋆(δ)VarP̂(r)
(V̄(r),h+1)(s, a)

N(r),h(s, a)
− 4β⋆(δ)H

N(r),h(s, a)

≥

√√√√4β⋆(δ)VarP̂(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)︸ ︷︷ ︸
(1)

−

√√√√4β⋆(δ)VarP̂(r)
(V̄(r),h+1)(s, a)

N(r),h(s, a)︸ ︷︷ ︸
(2)

− 4β⋆(δ)H

N(r),h(s, a)
. (46)

We want now to control the variance terms that appear in (1) and (2). Using inequalities (62) and (61) of
Lemma F.6, we have

VarP̂(r)
(V c,⋆
h+1)(s, a) ≥ VarP̂c

(r),h
(V c,⋆
h+1)(s, a)− 3H2εp ,

VarP̂(r)
(V̄(r),h+1)(s, a) ≤ 2VarP̂(r)

(V̂(r),h+1)(s, a) + 2P̂c
(r),h|V̄(r),h+1 − V̂(r),h+1|

≤ 2VarP̂(r)
(V̂(r),h+1)(s, a) + 2(2εr + 3εpH)(H − h) ,

where in the last inequality we used the induction hypothesis. Besides, as for any a, b, c ∈ R+, we have a ≥
b− c =⇒

√
a ≥

√
b−

√
c, and also for any d, f ∈ R+ we have

√
d+ f ≤

√
d+

√
f , we get

(1) :=

√√√√4β⋆(δ)VarP̂(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)
≥

√√√√4β⋆(δ)VarP̂c
(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)
−

√
12εpH2β⋆(δ)

N(r),h(s, a)
, and (47)

(2) :=

√√√√4β⋆(δ)VarP̂(r)
(V̄(r),h+1)(s, a)

N(r),h(s, a)
≤

√√√√8β⋆(δ)VarP̂(r)
(V̂(r),h+1)(s, a)

N(r),h(s, a)
+

√
8β⋆(δ)(3εpH + 2εr)(H + 1− h)

N(r),h(s, a)

(48)

Plugging the inequalities (47) and (48) in (46), we obtain

(II) ≥

√√√√4β⋆(δ)VarP̂c
(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)
−

√√√√8β⋆(δ)VarP̂(r)
(V̂(r),h+1)(s, a)

N(r),h(s, a)
−

√
12εpH2β⋆(δ)

N(r),h(s, a)
− 4β⋆(δ)H

N(r),h(s, a)

−

√
8β⋆(δ)(3εpH + 2εr)(H + 1− h)

N(r),h(s, a)
. (49)

Finally, as for any a, b ∈ R+ we have
√
2ab ≤ a+ b then

(II) ≥

√√√√4β⋆(δ)VarP̂c
(r)
(V c,⋆

(r),h+1)(s, a)

N(r),h(s, a)
−

√√√√8β⋆(δ)VarP̂(r)
(V̂(r),h+1)(s, a)

N(r),h(s, a)
− εpH − 10β⋆(δ)H

N(r),h(s, a)

− (3εpH + 2εr)(H − h)− 4β⋆(δ)H

N(r),h(s, a)
(50)

Term (IV): concentration error Conditioned on E⋆(δ), we have

(IV) = (P̂c
(r),h − Pc

h)V
c,⋆
h+1(s, a) ≥ −

∣∣∣[P̂c
(r),h − Pc

h]V
c,⋆
h+1(s, a)

∣∣∣



≥ −

√√√√2VarP̂c
(r)
(V c,⋆
h+1)(s, a)β

⋆(δ)

N(r),h(s, a)− 1
− 7β⋆(δ)

N(r),h(s, a)− 1
≥ −

√√√√4VarP̂c
(r)
(V c,⋆
h+1)(s, a)β

⋆(δ)

N(r),h(s, a)
− 14β⋆(δ)

N(r),h(s, a)
,

(51)

as for n ≥ 2, we have 2
n ≥ 1

n−1 .

Combine everything together By plugging in the bounds on (I), (II), (III), and (IV) in (42), we get

Q̂(r),h(s, a) ≥
1

M

M∑
i=1

rih(s, a) + Pc
hV

c,⋆
h+1(s, a) + b(r),h(s, a)−

11βc(δ,N(r),h(s, a))

N(r),h(s, a)
H − 28β⋆(δ)H

N(r),h(s, a)

−

√√√√8β⋆(δ)VarP̂(r)
(V̂(r),h+1)(s, a)

N(r),h(s, a)
− (3εpH + 2εr)(H + 1− h) = Qc,⋆

h (s, a)− (2εr + 3εpH)(H + 1− h) ,

where the last inequality is a consequence of the definition of the bonus (39) and optimal Bellman equations
(37).

D.2 Regret decomposition

We will start by writing down a regret decomposition. Let us define the essential technical quantities, such as
common regret and partial common upper regret

Rc(T ) :=
1

M

T∑
t=1

M∑
i=1

V c,⋆
1 (sit,1)− V c,πt

1 (sit,1), R
c

h(T ) :=
1

M

T∑
t=1

M∑
i=1

V̂t,h(sit,h)− V c,πt

h (sit,h)

Lemma D.3. Assume conditions of Lemma C.1. Then, on the event G(δ), the following inequality for any
partial upper common regret holds

R
c

h(T ) ≤ UTh := ATh +BTh +CTh +7eTH2εp +2eTHεr +
√

8H2 · TH · β(δ)/M +
1

M

M∑
i=1

T∑
t=1

H∑
h′=h

2eH1[[0;1]](N̄
i
t,h′),

where

N̄ i
t,h := N(rt),h(s

i
t,h, a

i
t,h) ,

ATh :=
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

√√√√4β⋆(δ)VarP̂c
t,h′

(V c,⋆
h+1)(s

i
t,h′ , ait,h′)

N̄ i
t,h′

1[[2;+∞]](N̄
i
t,h′) ,

BTh :=
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

√√√√8β⋆(δ)VarP̂c
t,h

(V̂t,h′+1)(sit,h′ , ait,h′)

N̄ i
t,h′

1[[2;+∞]](N̄
i
t,h′) ,

CTh :=
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

22βc(δ, N̄ i
t,h) + 46Hβ⋆(δ) + 2H2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

1[[2;+∞]](N̄
i
t,h′) .

Proof. Let us define δit,h = V̂t,h(sit,h) − V c,πt

1 (sit,h) and let us study this term separately. Since the policy is

deterministic, i.e., ait,h = πt,h(s
i
t,h), and satisfies V̂t,h(sit,h) = Q̂t,h(s

i
t,h, a

i
t,h), we have

δit,h = Q̂t,h(s
i
t,h, a

i
t,h)−Qc,⋆

h (sit,h, a
i
t,h) +Qc,⋆

h (sit,h, a
i
t,h)−Qc,πt

h (sit,h, a
i
t,h).

Next, for empirical Q-values, we have the following bound due to the clipping mechanism and A-1

Q̂t,h(s, a) ≤
N∑
i=1

nit,h(s, a)

N̄ i
t,h

r̂ ih(s, a) + P̂t,hV̂t,h+1(s, a) + bt,h(s, a)



≤ rch(s, a) + P̂t,hV̂t,h+1(s, a) + bt,h(s, a) + 2εr ,

thus, applying Bellman equations (36) and optimal Bellman equations (37), we have after a simple rearranging

δit,h ≤ P̂t,hV̂t,h+1(s
i
t,h, a

i
t,h)− Pc

hV
c,⋆
h+1(s

i
t,h, a

i
t,h) + bt,h(s

i
t,h, a

i
t,h) + Pc

h

[
V c,⋆
h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h) + 2εr

= [P̂t,h − Pc
h]V̂t,h+1(s

i
t,h, a

i
t,h) + Pc

h

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h) + bt,h(s

i
t,h, a

i
t,h) + 2εr .

In the decomposition above, we further rearrange it, using a virtual estimate of P̂c
t,h defined in (24) and re-

introducing again the kernel for i-th agent Pih

δit,h ≤ [P̂t,h − P̂c
t,h]V̂t,h+1(s

i
t,h, a

i
t,h)︸ ︷︷ ︸

(A)

+ [P̂c
t,h − Pc

h]
[
V̂t,h+1 − V c,⋆

h+1

]
(sit,h, a

i
t,h)︸ ︷︷ ︸

(B)

+ [P̂c
t,h − Pc

h]V
c,⋆
h+1(s

i
t,h, a

i
t,h)︸ ︷︷ ︸

(C)

(52)

+ [Pc
h − Pih]

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h)︸ ︷︷ ︸

(D)

+Pih

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h)−

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h+1)︸ ︷︷ ︸

=:ζit,h

(53)

+
[
V̂t,h+1 − V c,πt

h+1

]
(sit,h+1)︸ ︷︷ ︸

δit,h+1

+bt,h(s
i
t,h, a

i
t,h) + 2εr . (54)

Next, we analyze each term separately. With a slight abuse of notation, let us define N̄ i
t,h = N(rt),h(s

i
t,h, a

i
t,h).

In the sequel, we analyze only such (t, i, h) ∈ [T ]× [M ]× [H] such that N̄ i
t,h ≥ 2. In the case where N̄ i

t,h ≤ 1, we

have the trivial bound δit,h ≤ H.

Terms (A) and (D): heterogeneity errors First, let us handle the terms that come from the presence of
heterogeneity between agents. To analyze (A), let us apply the definition of the event Ec(δ) ⊆ G(δ) combined
with Holder’s inequality

(A) ≤ H∥P̂t,h(sit,h, ait,h)− P̂c
t,h(s

i
t,h, a

i
t,h)∥1 ≤ 2Hεp +

11Hβc(δ, N̄ i
t,h)

N̄ i
t,h

.

For (D) we apply Holder’s inequality, A-1 and Corollary F.2

(D) ≤ 2H∥Pc
h(s

i
t,h, a

i
t,h)− Pih(s

i
t,h, a

i
t,h)∥1 ≤ 2Hεp .

Term (B): correction error To analyze this term, we apply Lemma C.2 with f(s′) := [V̂t,h+1 − V c,⋆
h+1](s

′)
and get

(B) ≤ 1

H
Pc
h

[
V̂t,h+1 − V c,⋆

h+1

]
(sit,h, a

i
t,h) +

2H2|S|βKL(δ, N̄ i
t,h)

N̄ i
t,h

(1)

≤ 1

H
Pc
h

[
V̂t,h+1 − V c,πt

h+1

]
(sit,h, a

i
t,h) +

2H2|S|βKL(δ, N̄ i
t,h)

N̄ i
t,h

(2)

≤ 1

H
(D) +

1

H
δit,h+1 +

1

H
ζit,h+1 +

2H2|S|βKL(δ, N̄ i
t,h)

N̄ i
t,h

.

where (1) follows from the definition of optimal policy, and (2) follows from a simple rearranging of terms, similar
to the decomposition of δit,h. Additional term (D) appeared compared to a standard decomposition.

Term (C): concentration error From the definition of the event E⋆(δ) ⊆ G(δ) defined in Lemma C.1, and
from the analysis of the case N̄ i

t,h ≥ 2 it follows that

(C) ≤

√√√√2VarP̂c
t,h

(V c,⋆
h+1)(s

i
t,h, a

i
t,h)β

⋆(δ)

N̄ i
t,h − 1

+
7β⋆(δ)

N̄ i
t,h − 1

≤

√√√√4VarP̂c
t,h

(V c,⋆
h+1)(s

i
t,h, a

i
t,h)β

⋆(δ)

N̄ i
t,h

+
14β⋆(δ)

N̄ i
t,h

.



Bounding the bonus From the definition of the bonus (39), we have for all (t, i, h) ∈ [T ] × [M ] × [H] such
that N̄ i

t,h ≥ 2

bt,h(s
i
t,h, a

i
t,h) =

28β⋆(δ)H + 11βc(δ, N̄ i
t,h)

N̄ i
t,h

+

√
8β⋆(δ)

N̄ i
t,h

·VarP̂(r)
(V̂(r),h+1)(s, a) .

Using the inequality (62) of Lemma F.6, we have VarP̂t,h
(V̂t,h+1)(s

i
t,h, a

i
t,h) ≤ VarP̂c

t,h
(V̂t,h+1)(s

i
t,h, a

i
t,h)+ 3H2εp.

Besides, as for any a, b ∈ R+, we have
√
a+ b ≤

√
a+

√
b, we get√√√√8β⋆(δ)VarP̂t,h

(V̂t,h+1)(sit,h, a
i
t,h)

N̄ i
t,h

≤

√√√√8β⋆(δ)VarP̂c
t,h

(V̂t,h+1)(sit,h, a
i
t,h)

N̄ i
t,h

+

√
24εpH2β⋆(δ)

N̄ i
t,h

.

Now as for any a, b ∈ R+, we have
√
2ab ≤ a+ b, we get√√√√8β⋆(δ)VarP̂t,h

(V̂t,h+1)(sit,h, a
i
t,h)

N̄ i
t,h

≤

√√√√8β⋆(δ)VarP̂c
t,h

(V̂t,h+1)(sit,h, a
i
t,h)

N̄ i
t,h

+ 3εpH +
4Hβ⋆(δ)

N̄ i
t,h

.

Combine everything together After combining all the terms, we have for all (t, i, h) ∈ [T ]× [M ]× [H] such
that N̄ i

t,h ≥ 2

δit,h ≤ 7H2εp + 2εr +

(
1 +

1

H

)
δit,h+1 +

(
1 +

1

H

)
ζit,h+1 +

22βc(δ, N̄ i
t,h) + 46Hβ⋆(δ) + 2H2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

+

√√√√4VarP̂c
t,h

(V c,⋆
h+1)(s

i
t,h, a

i
t,h)β

⋆(δ)

N̄ i
t,h

+

√√√√8β⋆(δ)VarP̂c
t,h

(V̂t,h+1)(sit,h, a
i
t,h)

N̄ i
t,h

.

Let us define γh = (1 + 1/H)H−h. Notice that for any h ≥ 0 it holds γh ≤ e. Then by summing and expanding
over h ∈ [H] we have

R
c

h(T ) ≤ 7eTH2εp + 2eTHεr +
1

M

M∑
i=1

T∑
t=1

H∑
h′=h

γh′−1ζ
i
t,h′+1 +

1

M

M∑
i=1

T∑
t=1

H∑
h′=h

2eH1[[0;1]](N̄
i
t,h′)

+
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

√√√√4β⋆(δ)VarP̂c
t,h′

(V c,⋆
h+1)(s

i
t,h′ , ait,h′)

N̄ i
t,h′

1[[2;+∞]](N̄
i
t,h′) =: ATh

+
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

√√√√8β⋆(δ)VarP̂c
t,h

(V̂t,h′+1)(sit,h′ , ait,h′)

N̄ i
t,h′

1[[2;+∞]](N̄
i
t,h′) =: BTh

+
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

22βc(δ, N̄ i
t,h) + 46Hβ⋆(δ) + 2H2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

1[[2;+∞]](N̄
i
t,h′) . =: CTh

To conclude the statement, we apply a definition of the event E(δ) to the third term in the decomposition
above.

Lemma D.4. Define N̄ i
t,h = N(rt),h(s

i
t,h, a

i
t,h). Assume conditions of Lemma C.1. Then, on the event G(δ), the

following inequalities holds:

M∑
i=1

T∑
t=1

H∑
h=1

1[[2;+∞]](N̄
i
t,h)

N̄ i
t,h

≤ 4|S||A|H log

(
eMTH

|S||A|

)
,

M∑
i=1

T∑
t=1

H∑
h=1

√√√√1[[2;+∞]](N̄
i
t,h)

N
(r,l)
h,i

≤ 8H
√
|S||A|MT ,



M∑
i=1

T∑
t=1

H∑
h=1

1[[0;1]](N̄
i
t,h) ≤ 4H|S||A| .

Proof. The quantity Ñ i
t,h(s, a) represents the exact number of visits of the pair (s, a) at step h until episode t,

and after the first i agents executed the h-step. We want to bound N̄ i
t,h using Ñ i

t,h(s
i
t,h, a

i
t,h) so that we can

compute the latter sums by applying the pigeon-hole principle. To derive such a bound, we distinguish two cases:

Case 1: Nrt,h(s, a) < ν(δ, T ) In this case, by the synchronization rule described in Algorithm 2, we have

nit,h(s, a) < 2ni(rt),h(s, a). If we sum the latter inequality over all the agents, we obtain Ñ M
t,h (s, a) ≤ 2N(rt),h(s, a).

Now using definition of Ñ i
t,h(s, a) yields

N(rt),h(s, a) ≤ Ñ i
t,h(s, a) ≤ 2N(rt),h(s, a) .

Case 2: Nrt,h(s, a) ≥ ν(δ, T ) In this case, the synchronization rule ensures N̂ i
t,h(s, a) ≤ 2Nrt,h(s, a). Condi-

tioned on Ecount(δ), we have Ñ M
t,h (s, a) ≤ 10

7 N̂
i
t,h(s, a). Combining the two latter inequalities gives

N(rt),h(s, a) ≤ Ñ i
t,h(s, a) ≤ 4N(rt),h(s, a) ,

where the lower bound follows directly from the definition of Ñ i
t,h. Using the two previous inequalities, we derive

the following bound

N̄ i
t,h ≤ Ñ i

t,h(s
i
t,h, a

i
t,h) ≤ 4N̄ i

t,h .

Applying the latter inequality in the first sum of the lemma yields

M∑
i=1

T∑
t=1

H∑
h=1

1[[2;+∞]](N̄
i
t,h)

N̄ i
t,h

≤
M∑
i=1

T∑
t=1

H∑
h=1

4 · 1[[1;+∞]](Ñ
i
t,h)

Ñ i
t,h

.

By construction, this counter is thus incremented by at most 1 every time and we can apply the pigeon-hole
principle on this counter which yields

M∑
i=1

T∑
t=1

H∑
h=1

1[[2;+∞]](N̄
i
t,h)

N̄ i
t,h

≤
M∑
i=1

T∑
t=1

H∑
h=1

4 · 1[[1;+∞]](Ñ
i
t,h)

Ñ i
t,h

≤ 4

H∑
h=1

∑
s∈S

∑
a∈A

NT,h(s,a)∑
n=1

1

n

≤ 4

H∑
h=1

∑
s∈S

∑
a∈A

(log(NT,h(s, a)) + 1) ≤ 4|S||A|H log

(
eMTH

|S||A|

)
,

where we used the concavity of the logarithm in the last inequality. Similarly, we have

M∑
i=1

T∑
t=1

H∑
h=1

√
1[[2;+∞]](N̄

i
t,h)

N̄ i
t,h

≤
M∑
i=1

T∑
t=1

H∑
h=1

√√√√4 · 1[[1;+∞]](Ñ
i
t,h)

Ñ i
t,h

≤ 2

H∑
h=1

∑
s∈S

∑
a∈A

NT,h(s,a)∑
n=1

√
1

n
≤ 8

H∑
h=1

∑
s∈S

∑
a∈A

√
NT,h(s, a) ≤ 8H

√
|S||A|MT ,

where we used the concavity of the square root in the last inequality. Now as Ñ i
t,h(s

i
t,h, a

i
t,h) ≤ 4N̄ i

t,h, then we

have 1[[0;1]](N̄
i
t,h) ≤ 1[[0;4]](Ñ

i
t,h). Plugging in the latter inequality in the last sum of the lemma yields

M∑
i=1

T∑
t=1

H∑
h=1

1[[0;1]](N̄
i
t,h) ≤

M∑
i=1

T∑
t=1

H∑
h=1

1[[0;4]](Ñ
i
t,h) ≤

H∑
h=1

∑
s∈S

∑
a∈A

4∑
n=1

1 ≤ 4H|S||A| .



For ease of reading, we define βmax(δ) as

βmax(δ) := max

(
βKL(δ,MT ), βc(δ,MT ), β⋆(δ), β(δ), βVar(δ, T ), log

(
eMTH

|S||A|

))
. (55)

Lemma D.5. Assume conditions of Lemma C.1. Then, on the event G(δ), the following inequality holds

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V c,⋆
h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤ 2H2T + 2H2UT1 + 11H3Tεp + 6HTεr

+ 30H3βmax(δ)|S||A|1/2T 1/2M−1/2 ,

and we also have

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V̂t,h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤ 2H2T + 2H2UT1 + 17H3Tεp + 10HTεr

+ 30H3βmax(δ)|S||A|1/2T 1/2M−1/2 ,

where βmax(δ) is defined in Lemma C.1 as a worst-case concentration logarithmic factor.

Proof. Using inequality (62) of Lemma F.6, we have

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V c,⋆
h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarPi
h
(V c,⋆
h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(W)

+ 3H2 1

M

M∑
i=1

T∑
t=1

H∑
h=1

∥(Pih − P̂c
t,h)(s

i
t,h, a

i
t,h)∥11[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(X)

.

Term (X): We have for any (s, a) ∈ S ×A

∥Pih(s, a)− P̂c
t,h(s, a)∥1 ≤ ∥Pih(s, a)− Pc

h(s, a)∥1 + ∥Pc
h(s, a)− P̂c

t,h(s, a)∥1 ≤ εp +

√
2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

, (56)

where the bound on ∥Pih(s, a)− Pc
h(s, a)∥1 is provided by Lemma F.1 and the bound on ∥Pc

h(s, a)− P̂c
t,h(s, a)∥1

is provided by the second inequality of Lemma C.2. Thus we get

3H2 1

M

M∑
i=1

T∑
t=1

H∑
h=1

∥(Pc
h − P̂c

t,h)(s
i
t,h, a

i
t,h)∥11[[2;+∞]](N̄

i
t,h) ≤

3H2

M

M∑
i=1

T∑
t=1

H∑
h=1

εp +

√
2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

1[[2;+∞]](N̄
i
t,h) .

Finally applying Lemma D.4 yields

(X) ≤ 3H3Tεp + 24

√
2H6βKL(δ,MT )|S|2|A|T

M
.

Term (W): Using inequality (61) of Lemma F.6, we have

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarPi
h
(V c,⋆
h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤

1

M

M∑
i=1

T∑
t=1

H∑
h=1

2VarPi
h
(Vi,πt

h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(Y)

≤ 1

M

M∑
i=1

T∑
t=1

H∑
h=1

2HPih|V
c,⋆
h+1 − Vi,πt

h+1|(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(Z)

,



where we recall that Vi,πt

h+1 is the value function of the policy πt in the environment of the i-th agent (1).

Conditioned on EVar(δ), we have

(Y) ≤
√

8H5TβVar(δ, T )

M
+

6H3βVar(δ, T )

M
+ 2H2T .

Now by Corollary F.2, we have conditioned on Eoptimism for all s ∈ S

|V c,⋆
h+1(s)− Vi,πt

h+1(s)| ≤ |V c,πt

h+1(s)− Vi,πt

h+1(s)|+ V c,⋆
h+1(s)− V c,πt

h+1(s)

≤ εpH
2 + εrH + V̂t,h+1(s)− V c,πt

h+1(s) + (2εr + 3εpH)(H − h)

≤ 4εpH
2 + 3εrH + V̂t,h+1(s)− V c,πt

h+1(s) .

Using the definition of δit,h and ζit,h+1 introduced in Lemma D.3, we have

(Z) ≤ 1

M

M∑
i=1

T∑
t=1

H∑
h=1

2H(4εpH
2 + 3εr + δit,h + ζit,h+1)

≤ 8H3Tεp + 6HTεr +

√
8H5Tβ(δ)

M
+ 2H

H∑
h=1

R
c

h+1(T ) ≤ 8H3Tεp + 6HTεr +

√
8H5Tβ(δ)

M
+ 2H2UT1 ,

where the second inequality holds conditioned on E(δ). Combining everything yields

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarPi
h
(V c,⋆
h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤ (X) + (Y) + (Z)

≤ 11H3Tεp + 24

√
2H6βKL(δ,MT )|S|2|A|T

M
+

√
8H5TβVar(δ, T )

M
+

6H3βVar(δ, T )

M
+ 2H2T

+ 6HTεr +

√
8H5Tβ(δ)

M
+ 2H2UT1

Now let’s move to the second inequality of this lemma. Again by using inequality (62) of Lemma F.6, we have

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V̂t,h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarPi
h
(V̂t,h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(W′)

+ 3H2 1

M

M∑
i=1

T∑
t=1

H∑
h=1

∥(Pih − P̂c
t,h)(s

i
t,h, a

i
t,h)∥11[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(X)

.

Term (W′): Using inequality (61) of Lemma F.6, we have

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarPi
h
(V̂t,h+1)(s

i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤

1

M

M∑
i=1

T∑
t=1

H∑
h=1

2VarPi
h
(Vi,πt

h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(Y)

≤ 1

M

M∑
i=1

T∑
t=1

H∑
h=1

2HPih|V̂t,h+1 − Vi,πt

h+1|(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h)︸ ︷︷ ︸

(Z′)

.

Now again by Corollary F.2, we have conditioned on Eoptimism for all s ∈ S

|V̂t,h+1(s)− Vi,πt

h+1(s)| ≤ |V c,πt

h+1(s)− Vi,πt

h+1(s)|+ V̂t,h+1(s) + (2εr + 3εpH)(H − h)− V c,πt

h+1 + (2εr + 3εpH)(H − h)



≤ εpH
2 + εrH + V̂t,h+1(s)− V c,πt

h+1(s) + 2(2εr + 3εpH)(H − h)

≤ 7εpH
2 + 5εrH + V̂t,h+1(s)− V c,πt

h+1(s) .

By combining the bounds that we have on (X), (Y), and (Z′), we derive the following bound

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V̂t,h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤ (X) + (Y) + (Z′)

≤ 17H3Tεp + 24

√
2H6βKL(δ,MT )|S|2|A|T

M
+

√
8H5TβVar(δ, T )

M
+

6H3βVar(δ, T )

M
+ 10H2T

+ 10HTεr +

√
8H5Tβ(δ)

M
+ 2H2UT1 .

Finally, as we have

24

√
2H6βKL(δ,MT )|S|2|A|T

M
≤ 48H3βmax(δ)|S||A|1/2T 1/2M−1/2√

8H5Tβ(δ)

M
≤ 3H3βmax(δ)|S||A|1/2T 1/2M−1/2√

8H5TβVar(δ, T )

M
≤ 3H3βmax(δ)|S||A|1/2T 1/2M−1/2

6H3βVar(δ, T )

M
≤ 6H3βmax(δ)|S||A|1/2T 1/2M−1/2 ,

then

1

M

M∑
i=1

T∑
t=1

H∑
h=1

VarP̂c
t,h

(V̂t,h+1)(s
i
t,h, a

i
t,h)1[[2;+∞]](N̄

i
t,h) ≤ 17H3Tεp + 10HTεr + 2H2T + 2H2UT1

+ 60H3βmax(δ)|S||A|1/2T 1/2M−1/2 .

Lemma D.6. Assume conditions of Lemma C.1. Then, on the event G(δ), the following inequality holds

AT1 ≤ 23e · βmax(δ) ·
√
H3|S||A|TM−1 + 23eβmax(δ)

√
H3|S||A|UT1 M−1

+ 16eβmax(δ)T (6H2εp + 3Hεr) + 96eH3|S|3/2|A|M−1/2(βmax(δ))2 ,

BT1 ≤ 46e · βmax(δ) ·
√
H3|S||A|TM−1 + 46eβmax(δ)

√
H3|S||A|UT1 M−1

+ 32eβmax(δ)T (6H2εp + 3Hεr) + 192eH3|S|3/2|A|M−1/2(βmax(δ))2 ,

CT1 ≤ 272|S|2|A|M−1H3(βmax(δ))2 .

Proof. Term AT1 . To bound the term AT1 , we start by applying Cauchy-Schwartz inequality

AT1 =
e

M

M∑
i=1

T∑
t=1

H∑
h′=h

√√√√4β⋆(δ)VarP̂c
t,h′

(V c,⋆
h+1)(s

i
t,h′ , ait,h′)

N̄ i
t,h′

1[[2;+∞]](N̄
i
t,h′)

≤ e√
M

√√√√ 1

M

M∑
i=1

T∑
t=1

H∑
h′=h

VarP̂c
t,h′

(V c,⋆
h+1)(s

i
t,h′ , ait,h′)1[[2;+∞]](N̄

i
t,h′)

√√√√ M∑
i=1

T∑
t=1

H∑
h′=h

4β⋆(δ)1[[2;+∞]](N̄
i
t,h′)

N̄ i
t,h′

,

Now, applying Lemma D.5, Lemma D.4, and the subadditivity of the square root, we obtain

AT1 ≤ 16βmax(δ)e√
M

(√
2H3|S||A|T +

√
2H3|S||A|UT1 +

√
H2|S||A|T · (11H2εp + 6Hεr)



+
√
60H4|S|2|A|3/2T 1/2M−1/2 · βmax(δ)

)
.

Next, we analyze the last two terms in the upper bound above. For the third one, by a standard inequality√
2ab ≤ a+ b it holds that√

H2|S||A|T · (11H2εp + 6Hεr) ≤ 3HTεr + 6H2Tεp +H2|S||A| .

Notably, the first two terms already appeared in the regret decomposition; see Lemma D.3. For the last term,
the decomposition is more standard√

60H4|S|2|A|3/2T 1/2M−1/2βmax(δ) ≤ 6
√
H3|S||A|T + 5H5/2|S|3/2|A|M−1/2βmax(δ) .

Thus, by a simple rearranging of the terms and applying inequalities M ≥ 1, H ≥ 1, we have

AT1 ≤ 23e · βmax(δ) ·
√
H3|S||A|TM−1 + 23eβmax(δ)

√
H3|S||A|UT1 M−1

+ 16eβmax(δ)T (6H2εp + 3Hεr) + 96eH3|S|3/2|A|M−1/2(βmax(δ))2 .

Term BT1 . Similarly, the bound for the term BT1 is derived using a combination of Cauchy-Scwartz, Lemma D.5,
Lemma D.4, and the subadditivity of the square root

BT1 ≤ 46e · βmax(δ) ·
√
H3|S||A|TM−1 + 46eβmax(δ)

√
H3|S||A|UT1 M−1

+ 32eβmax(δ)T (6H2εp + 3Hεr) + 192eH3|S|3/2|A|M−1/2(βmax(δ))2 .

Term CT1 . Finally to estimate CT1 , we apply Lemma D.4

e

M

M∑
i=1

T∑
t=1

H∑
h′=h

22βc(δ, N̄ i
t,h) + 46Hβ⋆(δ) + 2H2|S|βKL(δ, N̄ i

t,h)

N̄ i
t,h

1[[2;+∞]](N̄
i
t,h′)

≤ 68H2|S|βmax(δ)

M

M∑
i=1

T∑
t=1

H∑
h=1

1

N̄ i
t,h

1[[2;+∞]](N̄
i
t,h) ≤ 272|S|2|A|M−1H3(βmax(δ))2 .

D.3 Proof of Theorem 4.1

Hereafter, we establish the following bound on the regret

R(T ) ≤ 138e
√
H3|S||A|TM−1(βmax(δ))2 + 6020e2H3|S|2|A|(βmax(δ))2 + eβmax(δ)TH(595Hεp + 148Hεr) .

Proof. Let us start by moving from our regret to a regret connected to a common kernel, using a combination
of Corollary F.2 and A-1

R(T ) = max
π

1

M

T∑
t=1

M∑
i=1

Vi,π1 (sit,1)− Vi,πt

1 (sit,1) ≤
1

M

T∑
t=1

M∑
i=1

V c,⋆
1 (sit,1)− V c,πt

1 (sit,1)︸ ︷︷ ︸
Rc(T )

+2TεpH
2 + 2TεrH .

Next, we assume that the event G(δ), defined in Lemma C.1 holds. Then Lemma D.2 implies

Rc(T ) ≤ R
c

1(T ) + 3TεpH
2 + 2TεrH =

1

M

T∑
t=1

M∑
i=1

V̂t,1(sit,1)− V c,πt

1 (sit,1) + 3TεpH
2 + 2TεrH .

By Lemma D.3 we have

R
c

1(T ) ≤ UT1 = AT1 +BT1 + CT1 + 7eTH2εp + 2eTHεr +
√
8H3T · β(δ)/M + 4eH2|S||A| ,



and, applying Lemma D.6, we have the following quadratic inequality on UT1

UT1 ≤ 69e · βmax(δ) ·
√
H3|S||A|TM−1 + 69eβmax(δ)

√
H3|S||A|UT1 M−1

+ 144eβmax(δ)T (2H2εp + εrH) + 288eH3|S|3/2|A|M−1/2(βmax(δ))2

+ 272|S|2|A|M−1H3(βmax(δ))2 + eT (7H2εp + 2Hεr) +
√
8H3TM−1βmax(δ) + 4eH2|S||A| .

After some rearranging of the terms, we have the following simplified version

UT1 ≤ 69e · βmax(δ)
√
H3|S||A|UT1 M−1 + 71e · βmax(δ) ·

√
H3|S||A|TM−1

+ eβmax(δ)T (295H2εp + 146Hεr) + 560H3|S|2|A|(βmax(δ))2 .

Finally, using inequality 2ab ≤ a2 + b2, we have

69e · βmax(δ)
√
H3|S||A|UT1 M−1 ≤ 1

2
UT1 + 2450e2H3|S||A|M−1(βmax(δ))2 ,

thus

UT1 ≤ 138e
√
H3|S||A|TM−1(βmax(δ))2 + 6020e2H3|S|2|A|(βmax(δ))2 + eβmax(δ)TH(590Hεp + 144Hεr) .

E COMMUNICATION COMPLEXITY

In the sequel, we prove the bound on the communication complexity of Fed-UCBVI stated in Lemma 4.1.

Lemma 4.1 (Communication Complexity). With probability at least 1−δ, the number of communication rounds
of Fed-UCBVI is bounded by

C(T ) ≤ O
(
|S||A|H log T +M |S||A|H log log T

+M |S||A|H log(1 + εpT )
)
,

where logarithmic dependence in |S|, |A|, H, 1/δ and M is ignored.

Proof. Let us fix (s, a, h) ∈ |S| × A × [H] and bound the maximum number of abortion signals triggered by
this triplet. We define R as the value of the variable r that indicates the current round of the communication,
defined in Fed-UCBVI, during iteration T . Let us also define ks,a,h,i as the number of times agent i triggered the
synchronization rule because of the triplet (s, a, h) and ks,a,h the number of times the synchronization rule was
triggered because of the triplet (s, a, h). Recall that

ν(δ, T ) = 14εpTHM + 182Mβc(δ, T ) . (57)

We distinguish two cases:

(1) N(R),h(s, a) ≤ ν(δ, T ): Thus, it holds that 2ks,a,h,i ≤ ni(R),h ≤ ν(δ, T ). Thereby ks,a,h,i ≤ log (ν(δ, T )). Hence,

we have ks,a,h ≤M log (ν(δ, T )).

(2) N(R),h(s, a) > ν(δ, T ): In this case, we can define

kmin
s,a,h = min{r ∈ [R] : N(r),h(s, a) ≤ ν(δ, T ) and N(r+1),h(s, a) > ν(δ, T )} .

By the precedent case, we have kmin
s,a,h ≤M log (ν(δ, T )). Now let us denote by r1, . . . , rp, where p = ks,a,h−kmin

s,a,h,
the indices of the rounds where the synchronization rule was triggered because of the triplet (s, a, h) starting
from round kmin

s,a,h. Thus, for a certain i ∈ [M ], we have

N̂ i
(rt+1),h

(s, a) ≥ 2N(rt+1−1),h(s, a) .



Under the event Ecount(δ), we have for any t ∈ [1; p],

Ñ M
(rt+1),h

(s, a) ≥ 3

7
N̂ i

(rt+1),h
(s, a) +

1

7
ν(δ, T ) ≥ 4

7
N̂ i

(rt+1),h
(s, a),

where Ñ M
(rt+1),h

(s, a) is defined in (29). Combining the two previous inequalities, it gives

Ñ M
(rt+1),h

(s, a) ≥ 2 · (4/7)N(rt+1−1),h(s, a) ≥ (8/7)N(rt),h(s, a) = (8/7)Ñ M
(rt),h

(s, a) ,

where the second inequality comes from rt+1 > rt and monotonicity of the counters. Unrolling the last recursion
yields

TM ≥ Ñ M
(rp),h

(s, a) ≥ (8/7)ks,a,h−kmin
s,a,hν(δ, T ) .

Thus, we obtain

ks,a,h ≤ kmin
s,a,h +

log(TM/ν(δ, T ))

log(8/7)
≤M log (ν(δ, T )) +

log(TM/ν(δ, T ))

log(8/7)
,

which yields

C(T ) ≤ Rmax :=M |S||A|H log (ν(δ, T )) + |S||A|H log(TM/ν(δ, T ))

log(8/7)
. (58)

F TECHNICAL LEMMAS

Lemma F.1 (ℓ1-norm Bound). Assume A-1, then

max
(s,a,h)∈S×A×[H]

∥Pc
h(·|s, a)− Pih(·|s, a)∥1 ≤ εp .

Proof. Let (s, a, h) ∈ S ×A× [H]. Using A-1, we get

∥Pc
h(·|s, a)− Pih(·|s, a)∥1 =

∑
s′∈S |Pc

h(s
′|s, a)− Pih(s

′|s, a)| =
∑
s′∈S εp|Pc

h(s
′|s, a)− P ind,i

h (s′|s, a)| ≤ εp .

Lemma F.2. For any policy π, for any (s, a, h) ∈ S ×A× [H], and for any (i, j) ∈ [M ]2, we have

|di,πs0,h(s, a)− dj,πs0,h(s, a)| ≤ εpH .

Proof. Let us consider two following MDPs M1 = (S,A, H, {Ph′,i}1≤h′≤H , {1(s,a)(·)1h(h′)}1≤h′≤H) and M2 =

(S,A, H, {Ph′,j}1≤h′≤H , {1(s,a)(·)1h(h′)}1≤h′≤H). Let’s denote by Ṽ i,πh and Ṽ j,πh the values function associated
with the policy π in these two respective environments. We have

Ṽ i,πh (s0) = Eπ

[
H∑
h′=1

1(s,a)(s
i
h, a

i
h)1h(h

′)

]
= Eπ

[
1(s,a)(s

i
h, a

i
h)
]
= di,πs0,h(s, a) .

Similarly, we have Ṽ j,πh (s0) = dj,πs0,h(s, a). Finally applying Lemma F.8 combined with Holder’s inequality, and

the fact that ∥Ṽ j,πh ∥∞ ≤ 1 yields

|di,πs0,h(s, a)− dj,πs0,h(s, a)| ≤ εpH .



F.1 Bellman type equations for the variance

For a deterministic policy π and an agent i, we recall the following definitions of the Bellman-type equations for
the variances as follows

σQi,π
h (s, a) := VarPi

h
(Vi,πh+1)(s, a) + PihσV

i,π
h+1(s, a)

σVi,πh (s) := σQi,π
h (s, π(s))

σVi,πH+1(s) := 0 , (59)

where VarPi
h
(f)(s, a) := Es′∼Pi

h(·|s,a)

[(
f (s′)− Pihf(s, a)

)2]
denotes the variance operator. Unrolling the prece-

dent relation yields

σVi,π1 (s) =

H∑
h=1

∑
s′,a′

di,πs,h(s
′, a′)VarPi

h
(Vi,πh+1)(s

′, a′) ,

where di,πs,h(s
′, a′) is the probability of visiting a pair (s′, a′) in the i-th environment while following the policy π

and starting from a state s. Next, we state the well-known Bellman equation for variances (see, e.g., Sobel 1982;
Azar et al. 2017).

Lemma F.3. For any deterministic policy π, for all h ∈ [H], and for all i ∈ [M ],

Eπ

( H∑
h′=h

r ih′(sih′ , aih′)−Qi,π
h (sih, a

i
h)

)2
∣∣∣∣∣∣(sih, aih) = (s, a)

 = Qi,π
h (s, a) . (60)

In particular,

Eπ

( H∑
h=1

r ih(s
i
h, a

i
h)− Vi,π1 (si1)

)2
 = σVi,π1 (si1) =

H∑
h=1

∑
s,a

di,πh (s, a)VarPi
h
(Vi,πh+1)(s, a) .

F.2 Concentration inequalities

Lemma F.4 (Deviation inequality for categorical distribution, Jonsson et al. 2020). Let (Xt)t∈N∗ be i.i.d. sam-

ples from a probability measure P supported on {1, . . . ,m}. We denote by P̂n the empirical vector of probabilities,
i.e., for all k ∈ {1, . . . ,m},

P̂n(k) :=
1

n

n∑
ℓ=1

1{k}(Xℓ).

For all P and for all δ ∈ (0, 1),

P
(
∃n ∈ N⋆, nKL

(
P̂n
∥∥P) > log(1/δ) + (m− 1) log(e(1 + n/(m− 1)))

)
≤ δ .

Lemma F.5 (Corollary 11 by Talebi and Maillard 2018). Let P ,Q two probability distributions on S. For all
functions f : S 7→ [0, H],

Pf − Qf ≤
√
2VarQ(f)KL(P∥Q) + 2

3
HKL(P ,Q) .

where we have defined Pf := Es∼P [f(s)].

Lemma F.6 (Lemma H.9 by Tiapkin et al. 2023). For any two probability measures P,Q on S, for f, g : S 7→ [0, b]
two functions defined on S, we have that

VarP(f) ≤ 2VarP(g) + 2bP|f − g| and (61)

VarQ(f) ≤ VarP(f) + 3b2∥P− Q∥1 (62)

where we denote the absolute operator by |f |(s) = |f(s)| for all s ∈ S.



Lemma F.7 (Theorem 4 by Maurer and Pontil 2009). . Consider any δ > 0 and any integer n ≥ 2. Let
Y, Y1, . . . , Yn be a collection of i.i.d. random variables falling within [0, 1]. Define the empirical mean Ȳ :=
1
n

∑n
i=1 Yi and empirical variance Ŷn := 1

n

∑n
i=1

(
Yi − Ȳ

)2
. Then we have

P

∣∣∣∣∣E[Y ]− 1

n

n∑
i=1

Yi

∣∣∣∣∣ >
√

2Ŷn log(2/δ)

n− 1
+

7 log(2/δ)

3(n− 1)

 ≤ δ

Below, we state the self-normalized Bernstein-type inequality by Domingues et al. (2021c). Let (Yt)t∈N⋆ , (wt)t∈N⋆

be two sequences of random variables adapted to a filtration (Ft)t∈N. We assume that the weights are in the
unit interval wt ∈ [0, 1] and predictable, i.e. Ft−1 measurable. We also assume that the random variables Yt are
bounded |Yt| ≤ b and centered E[Yt|Ft−1] = 0. Consider the following quantities

St :=

t∑
s=1

wsYs , Vt :=

t∑
s=1

w2
s · E[Y 2

s |Fs−1] ,

and let h(x) ≜ (x+ 1) log(x+ 1)− x be the Cramér transform of a Poisson distribution of parameter 1.

Theorem F.1 (Anytime Bernstein-type concentration inequality for martingales). For all δ > 0,

P
[
∃t ≥ 1, (Vt/b

2 + 1)h

(
b|St|
Vt + b2

)
≥ log(1/δ) + log (4e(2t+ 1))

]
≤ δ.

The previous inequality can be weakened to obtain a more explicit bound: if b ≥ 1 with probability at least 1− δ,
for all t ≥ 1,

|St| ≤
√
2Vt log (4e(2t+ 1)/δ) + 3b log (4e(2t+ 1)/δ) .

Next, we apply this Bernstein inequality to a particular distribution. Let Ft for t ∈ N be a filtration and (Xt)t∈N⋆

be a sequence of Bernoulli random variables with P(Xt = 1|Ft−1) = Pt with Pt being Ft−1-measurable and Xt

being Ft-measurable.

Corollary F.1. For all δ > 0,

P

(
∃n :

∣∣∣∣∣
n∑
t=1

Xt − Pt

∣∣∣∣∣ > 1

8

n∑
t=1

Pt + 11 log

(
4e(2n+ 1)

δ

))
≤ δ.

Proof. Given a simplified version, we have with probability at least 1 − δ by applying inequality 2ab ≤ a2 + b2

for a, b ≥ 0∣∣∣∣∣
n∑
t=1

Xt − Pt

∣∣∣∣∣ ≤
√
2 · Vn

8
· 8 log (4e(2n+ 1)/δ) + 3 log (4e(2n+ 1)/δ) ≤ 1

8

n∑
t=1

Pt + 11 log (4e(2n+ 1)/δ) .

F.3 Performance-difference Lemma

Lemma F.8 (Lemma 3 of Russo 2019). Let us consider two MDPs M1 = (S,A, H, r(1),P(1)) and M2 =

(S,A, H, r(2),P(2). Let V(1),π
1 (s) and V(2),π

1 (s) are values of a fixed policy π in MDP M1 and M2 respectively.
Then it holds

V(1),π
1 (s)− V(2),π

1 (s) = Eπ,M1

[
H∑
h=1

(
r
(1)
h − r

(2)
h

)
(sh, ah) +

(
P

(1)
h − P

(2)
h

)
V(2),π
h+1 (sh, ah)

]
,

where expectation is taken over the trajectories (s1, a1, . . . , sH , aH) generated by policy π in an MDP M1.



Corollary F.2. Let us consider two MDPs M1 = (S,A, H, r(1),P(1)) and M2 = (S,A, H, r(2),P(2), such that

∀(s, a, h) ∈ S×A×[H] : |r(1)h (s, a)−r(2)(s, a)| ≤ εr, |V(1),π
h (s)| ≤ c, |V(2),π

h (s)| ≤ c, and ∥P(1)
h (s, a)−P

(2)
h (s, a)∥1 ≤

εP where c > 0 is a positive constant and V(1),π
1 (s) and V(2),π

1 (s) are values of a fixed policy π in MDP M1 and
M2 respectively. Then it holds

V(1),π
1 (s1)− V(2),π

1 (s1) ≤ εP cH + εrH .

Proof. Follows directly from combination of Lemma F.8, Holder’s inequality and a fact that ∥V(2),π
h ∥1 ≤ c.

Inspired by a construction of Ross and Bagnell (2010), we can show that dependence H2 in terms of ℓ1-distance
between two models in non-improvable.

Lemma F.9. There exist two MDPs M1 = (S,A, H, r,P1) and M2 = (S,A, H, r,P2) with the same reward
function and different kernels, H ≥ 2 such that ∀(s, a, h) ∈ S × A × [H] : ∥P1

h(s, a) − P2
h(s, a)∥1 ≤ εP for

0 < εp < 2/H. Then there is a policy π such that values V1,π
1 (s) and V2,π

1 (s) in MDPs M1 and M2 satisfy

V1,π
1 (s1)− V2,π

1 (s1) = Ω(εpH
2) .

Proof. Consider the problem with 2 states {s1, s2} and 1 action {a}, the agent always starts at s1. The reward
function satisfies rh(s1, a) = 1, rh(s2, a) = 0 for all h ∈ H. Finally, the transition kernels are the same for all h
and are defined as

Pih(s1|s1, a) = 1− pi, Pih(s2|s1, a) = pi, Pih(s1|s2, a) = 0, Pih(s2|s2, a) = 1 ,

for i ∈ {1, 2}. In other words, the state s2 is a sink with zero reward. Since there is only one action, the value is
the same for any policy π. Let us take p1 = 0 and p2 = εp, then under the kernel P1 the value V1,π

1 (s1) is equal

to H, whereas under the kernel P2, the value function V1,π
1 (s1) it is equal to

V2,π
1 (s1) = 1 + (1− εp) + (1− εp)

2 + . . .+ (1− εp)
H−1 =

1− (1− εp)
H

εp
.

Then we have

V1,π
1 (s1)− V2,π

1 (s1) =
Hεp − 1 + (1− εp)

H

εp
.

Now as 0 < εp < 2/H, Bernoulli’s inequality yields

V1,π
1 (s1)− V2,π

1 (s1) =
Hεp − 1 + (1− εp)

H/2(1− εp)
H/2

εp
≥ Hεp − 1 + (1−Hεp/2)(1−Hεp/2)

εp
=
εpH

2

4
,

where the first inequality comes from (1− x)r ≥ 1− rx for 0 ≤ x ≤ 1 and r > 1.


